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Abstract This study proposes a methodology for developing deterioration models and predicting the
service lives of vertical assets of urban water systems (i.e., water storage tanks and pumping stations) using
regression analysis. The main factors contributing to the deterioration of these assets are analyzed. Simple and
multiple linear regression models of average and maximum deterioration are calculated for 22 water storage
tanks and 17 wastewater pumping stations. Data on a set of four water storage tanks are used to validate the
developed deterioration models. Service life prediction is carried out using the developed models and
considering two maximum deterioration levels: the maximum recommended and admissible deterioration
levels. Two water storage tanks are further studied to illustrate and discuss the effect of maintenance and
rehabilitation interventions on asset service life by comparing the asset deterioration before and after the
interventions. Results include simple linear regression models of average and maximum deterioration indices as
a function of asset age and multiple linear regression models that incorporate other physical, operational and
environmental factors. The results show that simple linear regression models of asset deterioration show a better
predictive power than multiple regression models. Despite the higher data variability of multiple regression
models, these models allow to include the random process of asset deterioration, through the calculation of the
standard deviation. This study also shows that periodic interventions are a preferable maintenance and
rehabilitation strategy over major sporadic rehabilitation interventions since it allows to maintain assets in good
condition and to extend their service life almost indefinitely.

Plain Language Summary Urban water assets are continuously deteriorating and more investments
are necessary to maintain adequate levels of service. However, investment budgets are often limited and
appropriate deterioration models and reliably predicted service lives are essential for planning and scheduling
maintenance actions. This paper develops deterioration models for water storage tanks and wastewater
pumping stations based on the identification and classification of anomalies through visual inspection.
Additionally, service lives (i.e., the period from the installation until the asset or its components fulfill the
service requirements) were obtained and compared with reference values. Finally, the effect of maintenance
actions and rehabilitation interventions on the service life of vertical assets was discussed. In order to
maintain a good asset condition and extend its service life quasi‐indefinitely, periodic and well‐established
interventions are a preferable maintenance and rehabilitation strategy over major sporadic rehabilitation
interventions.

1. Introduction
Assets and components have finite service lives due to the deterioration process caused by chemical, physical or
mechanical changes (Masters & Brandt, 1989). Deterioration processes are usually associated with specific
physical phenomena that evolve as deterioration progresses, causing a reduction in the performance and in the
physical condition of the assets (Elwany & Gebraeel, 2009; Ferreira et al., 2021; Gorjian et al., 2009). Deteri-
oration models used to predict the aging process can focus on asset physical condition (condition‐based models)
or on asset performance reliability (reliability‐based models) (Ugarelli & Bruaset, 2010). The infrastructural
condition assessment of urban water asset. allows to obtain an accurate prediction of the residual service life
evaluation of its current value, improving the forecast of future rehabilitation capital expenditure needs (Feliciano
et al., 2017; Scholten et al., 2014). Furthermore, appropriate deterioration models and reliably predicted service
lives are essential for cost‐effective and timely maintenance planning and scheduling (EPA, 2013; Scheidegger
et al., 2015; Wang & Zhang, 2007).
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The asset service life corresponds to the period after the installation during which an asset or its components fulfill
the performance requirements (ISO 15686‐1, 2011), which depends on the type and nature of the asset. The
reference service life is the lifetime of an asset that is known to be expected under a particular set (reference set) of
in‐use conditions (ISO 15686‐9, 2008). Vertical assets and facilities are assets that are not buried and whose
condition is likely to be directly assessed by visual inspection (e.g., water storage tanks, pumping stations and
treatment plants). Reference service lives that are generally accepted in the United States, Central and Northern
Europe and Australia are higher than those considered in Portugal, since the former countries have better
operation and maintenance (O&M) practices in their infrastructures (e.g., more frequent maintenance in-
terventions) than those used in Portugal.

Reference service lives are, usually, obtained through informed judgments from experienced experts. These
values are only indicative, as this parameter is greatly affected by the quality of production of materials, transport
and storage conditions, method of installation, adaptation to local conditions and O&M practices (Cabral
et al., 2019; Halcrow, 2007). Reference services lives are useful when no more information is available; however,
they have a high level of inherent subjectivity because expert judgments are influenced by their experience and
skills, which can, sometimes, result in inconsistent or misleading recommendations (Alegre et al., 2014; Wang &
Zhang, 2007).

Different methods can be applied to predict the asset service life, each with a different level of complexity,
applicability, and input data. The most common methods are: (a) deterministic; (b) probabilistic; and (c) engi-
neering (Lacasse & Sjöström, 2004; Moser, 2004). Deterministic methods are based on the analysis of asset
deterioration factors and their mechanisms to quantify them in terms of deterioration models (Silva, 2015;
Tavares et al., 2020). These methods are easy to understand and apply; they can be implemented relatively
quickly, avoiding redundancy of information; they maintain their operability even when not all variables of the
same problem are known (Gaspar, 2002). Since the service life is a deterministic value, these methods do not
allow providing information regarding the deterioration process nor the change from one deterioration state to
another and are, therefore, unable to capture the random nature of the assets' deterioration (Hovde, 2000; Mc
Duling et al., 2008).

The most widely used deterministic methods for service life prediction are simple or multiple linear regressions
and factorial methods. Factorial methods were the main drivers of deterministic methods, being the basis for the
international standard for service life planning of buildings and constructed assets (ISO 15686: 2011). Bhadauria
and Grupta (2006) developed a bilinear graphical deterioration model of water tanks constructed in India to
estimate the average total service life for staging and water retaining components and the overall tank structure.
Chughtai and Zayed (2008) developed condition assessment models for sewer pipes using multiple regression
techniques and considering different physical, environmental and operational influence factors.

Probabilistic methods can also be used to predict asset deterioration. In these models, asset deterioration is
represented as a stochastic process based on random variables that define the probabilistic parameters affecting an
average deterioration curve (Moser, 2004). Although these methods contribute to a better understanding of the
physical phenomena associated with the deterioration process, it is necessary to use complex mathematical
models, a large number of data points and a great dependence on fieldwork (Gaspar, 2002). Sempewo and
Kyokaali (2016) proposed a decision support system to predict the future condition of a water distribution
network using a Markov‐based approach and a case study in Kampala Water, Uganda. Martins et al. (2013)
developed a comparative study of three stochastic models for the prediction of pipe failures in water distribution
systems: the single‐variate Poisson process, the Weibull accelerated lifetime model and the linear‐extended Yule
process.

The engineering methods present the advantages of the two previous methods; they are easily understood and
applied as deterministic methods but describe the deterioration processes probabilistically (Cecconi, 2002). An
example of these methods is the probabilistic approach to the factorial method, in which probability density
functions are used instead of adopting deterministic values for the variable (Moser, 2004).

Despite several studies of service life prediction through deterioration models of concrete structures and electrical
equipment exist (see, for example, Jenberg et al., 2004; Lacasse & Sjöström, 2004; Zhou et al., 2021), very few
studies address urban water assets and those developed in this field focus only on pipes and sewers (see, for
example, Egger et al., 2014; Jayaram & Srinivasan, 2008; Li & Haimes, 1992a, 1992b; Rajani & Kleiner, 2001;
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Scheidegger et al., 2011; Ugarelli & Bruaset, 2010). The lack of sound methodologies for service life prediction
applied to vertical assets in urban water systems using deterioration models leads engineers and decision makers
to use reference values of service lives (in Portugal, recommended by the water regulator, ERSAR) to establish
the maintenance and rehabilitation plans. These values were defined for a reference set of in‐use and O&M
conditions, which can result in the under or over‐estimation of the real assets' service life, causing errors in
intervention scheduling and the prediction of the future rehabilitation capital expenditure needs.

This paper proposes and demonstrates the application of a methodology for service life prediction of vertical
urban water assets using deterioration models of asset physical condition. The proposed methodology has several
key‐novel features in comparison to previous approaches, namely: (a) the establishment of two maximum
deterioration levels; (b) the analysis of the main factors that contribute to the deterioration of water storage tanks
and wastewater pumping stations and their respective deterioration mechanisms; (c) the development and vali-
dation of simple and multiple deterioration models for civil work components and equipment; (d) the service life
prediction using deterioration models and their comparison with the reference service lives; and (e) the analysis
and discussion of the effect of maintenance interventions on asset service life.

2. Proposed Methodology
The proposed methodology for service life prediction is a four‐step procedure: (a) Asset inspection and deteri-
oration indices calculation; (b) Identification of main factors that contribute to asset deterioration; (c) Deterio-
ration models development and validation; and (d) Service life prediction.

In the first step of the proposed methodology, a visual inspection of the selected assets is carried out to identify
and classify the anomalies in terms of severity, intensity and extension and results from visual inspections are
used to calculate the average and maximum values of deterioration indices proposed by Cabral et al. (2022a):
component deterioration index (CDIav and CDImax, respectively for average and maximum values), asset dete-
rioration index (ADIav and ADImax, respectively for average and maximum values) and infrastructure deterioration
index (IDIav and IDImax, respectively for average and maximum values). These deterioration indices vary between
0 (the absence of anomalies) and 100 (the component, asset or infrastructure is totally degraded).

The CDIav is calculated taking into consideration the severity, the intensity and the extension of each anomaly in
the component and it represents the average component deterioration:

CDIav (t) =
∑
n

i=1
(Si · Ii · Ei)

n
(1)

where t is the reference time when the index is calculated, CDIav is the average component deterioration index at
the time t (‐), Si, Ii, Ei are the severity, intensity and extension of the anomaly i (‐), respectively, and n is the total
number of anomalies identified in the component. The CDImax corresponds to the classification value of the worst
anomaly in the inspected component and it is calculated since this anomaly may require urgent intervention and is
not reflected in the average index value.

The ADIav indicates a typical value that represents the average deterioration of an asset. It is based on the CDIav of
each component weighted by their respective replacement cost or criticality:

ADIav(t) =
∑n

j=1 (CDIj,t av · wj,t)

∑
n

j=1
wj,t

(2)

where ADIav is the average asset deterioration index at time t (‐), CDIj ,t av is the average component deterioration
index of component j at time t (‐), wj,t is the weighting factor (replacement cost or criticality) of component j at
time t and n is the total number of components presented in the asset. The criticality represents the importance of
each component in the asset from the physical condition perspective. The weighting scale from NRAU (2007)
proposed for buildings was applied, which varies between 1 (less important finishing components with low
impact on asset deterioration) and 6 (very important structural components that significantly contribute to the

Water Resources Research 10.1029/2023WR034854

CABRAL ET AL. 3 of 19

 19447973, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034854 by C

ochrane Portugal, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



physical deterioration of the asset). The weights assignment was carried out in a brainstorming session between a
panel of specialists and water utility engineers.

The ADImax corresponds to the worst anomaly classification of the several components belonging to the asset (i.e.,
maximum CDImax). It is acknowledged that assets with higher criticality or replacement cost contribute more
significantly to the calculated indexes, however, these indexes still rely on the severity, the intensity, and the
extension of anomalies for each component, providing a comprehensive description of the condition deterioration
for each asset. A similar equation can be used to calculate the IDIav, in which the ADIav of several assets is added,
considering a weighting factor that corresponds to the replacement cost or criticality level of each asset in the
infrastructure.

In the second step, the most important factors contributing to asset deterioration are identified and the general and
technical characteristics of assets are collected. Since asset deterioration is a complex process, influenced by
several factors, only the most important ones are considered. In urban water assets, these factors are usually
divided into three categories (Barton et al., 2019; Chughtai & Zayed, 2008; FCM & NRC, 2003): physical (i.e.,
pipe‐intrinsic), operational and environmental. Physical factors are associated with asset characteristics, opera-
tional aspects deal with the adapted operational and maintenance practices and environmental factors are related
to external conditions.

In the third step, deterioration models are developed based on simple linear regression models, with the following
general form:

Y = β0 + β1X1 + ε (3)

where Y is the dependent variable (e.g., ADIav, ADImax), X1 is the independent variable (deterioration factor), β0 is
the constant term, β1 is the regression coefficient, and ε is the random component that represents the disturbance
or error term. The least‐square method is used to obtain the linear parametrical equations (deterioration models).

Simple linear regression models allow an understanding of each identified factor's deterioration mechanisms.
Shohet et al. (1999) suggested four typical patterns of deterioration paths in buildings: linear, "convex‐shaped",
"concave‐shaped" and "S‐shaped" patterns. The linear pattern is related to factors that cause a permanent
deterioration in the asset. The “convex‐shaped” pattern is characterized by the physical and chemical phe-
nomena that initially act slowly, but whose action is felt cumulatively. The “concave‐shaped” pattern is more
related to biological factors that, at an early stage, develop rapidly, but whose potential for deterioration de-
creases over time (Silva, 2015). The S‐shaped pattern is associated with phenomena that change in intensity
over time.

Multiple linear regression analysis allows obtaining deterioration models that are explained by more than one
independent variable (deterioration factor). Independent variables with a high correlation coefficient for a specific
dependent variable should be considered for developing the multiple linear regression model. The general form of
these models is the following:

Y = β0 + β1X1 + ... + βpXp + ε (4)

where β1,…, βp are the regression coefficients and each represents the change in the mean response of the
dependent variable, per unit increase in the associated independent variable when all the other independent
variables are held constant. The intercept term, β0, represents the estimated mean response of the dependent
variable when all the independent variables are zero.

Once regression models have been developed, it is essential to confirm the goodness‐of‐fit of the model and the
statistical significance of the model and the estimated coefficients. Different measures of goodness‐of‐fit may be
used, namely, the standard deviation/error of the estimator's beta, the r‐square, r2, for simple regression models
and the adjusted r‐square, r2a, for multiple regression models. The adjusted r‐square is a modification of the r‐
square considering the number of existing independent variables. It also represents the quality of the adjust-
ment: a value close to one indicates that the regression adjustment is very good and that the linear regression can
explain most of the variation in the dependent variable.
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Assuming the normality of the error terms, it is possible to measure the model significance through the
overall F‐test. If the p‐value of the F‐test is less than the significance level (e.g., 0.05), it provides sufficient
evidence to conclude that the regression model fits the data better than the model with no independent
variables. The study of the serial correlation of error terms is carried out through the Durbin–Watson test,
which computes residual autocorrelations, allowing the no correlation of error terms to be concluded (Durbin
& Watson, 1950).

The variance inflation factor, VIF, is a measure of the degree of multicollinearity between independent variables
and it is calculated for all the independent variables of the multiple regression models. This factor is the ratio of

the variance of the estimator β
∧
i (i = 1,2,…p) when fitting the full model divided by the variance of β

∧
i when fitting

on its own (James et al., 2013). According to James et al. (2013), the variance inflation factor for each regression
coefficient can be calculated by:

VIF( βi
∧
) =

1
1 − r2Xi |X− i

(5)

where r2Xi |X− i is the r‐square value associated with the regression model of X‐i on other independent variables. The
smallest possible value for VIF is 1, which indicates the complete absence of collinearity. VIF should generally
not exceed the value of 10 (Robinson & Schumacker, 2009). A VIF value of 10 indicates that the estimated
variance of the regression coefficient is 10 times higher than it would have been if the independent variable had
been linearly independent of the other independent variables in the analysis (O’Brien, 2007).

Model validation must be carried out using a different data set from the one used to obtain the simple and multiple
linear regression models. The two most common measures used to assess and validate the obtained models
comparing the observed values (e.g., ADIav from inspections) and the predicted values (e.g., ADIav from the
models) are: the root mean squared error, RMSE, and percentage of relative absolute error, RAE. The RMSE
measures the difference between the real values (ADIavk) of asset k and estimated values (ÂDIavk) obtained through
the regression model:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

k=1
(ADIavk − ÂDIavk )

2
√

(6)

The percentage of RAE is given by the absolute difference between the real and the estimated value divided by the
real value:

RAE =
100
n
∑
n

k=1

⃒
⃒
⃒
⃒
⃒

ADIavk − ÂDIavk
ADIavk

⃒
⃒
⃒
⃒
⃒

(7)

In the last and fourth step (Service life prediction), the obtained deterioration models through simple and multiple
linear regression analysis are used to predict the service life of urban water assets considering a deterioration
level. The maximum deterioration level that establishes the end of the assets' service life is only a theoretical limit,
generally difficult to specify (Moser, 2004). The definition of deterioration levels and, consequently, of the assets'
end‐of‐life, may vary over time mainly due to the performance requirements and the utility investment capacity
(Silva et al., 2012). Two deterioration levels are proposed herein based on the analysis of deterioration indices and
the current condition of the assets: the maximum recommended deterioration level and the maximum admissible
deterioration level.

The maximum recommended deterioration level corresponds to an ADIav equal to 40 (assets are, in the worst
scenario, in good condition) to ensure that the asset always fulfills its intended purpose. The maximum admissible
deterioration level corresponds to an ADIav equal to 60 (assets are, in the worst scenario, in reasonable condition),
from which the asset may not fulfill the function for which it was intended, causing a peak investment in the short‐
term. These values resulted from a comprehensive brainstorming between a panel of specialists and water utility
engineers allowing to establish a five level‐scale for condition rating (Cabral et al., 2022a).
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• Rating‐level 5 | ADIav [0; 10]: New asset or asset in excellent condition or asset recently fully rehabilitated.
• Rating‐level 4 | ADIav ]10; 40]: Asset in good condition ensured by regular maintenance.
• Rating‐level 3 | ADIav ]40; 60]: Asset in a reasonable condition requiring exceptional intervention beyond the

regular maintenance plan.
• Rating‐level 2 | ADIav ]60; 90]: Asset in poor condition endangering its functionality and requiring deep

intervention in the short‐term.
• Rating‐level 1 | ADIav ]90; 100]: Asset in an unsatisfactory condition not meeting component functionality

requirement.

3. Case Studies
Three data sets are considered to demonstrate the proposed methodology for service life prediction. Each data set
is composed of different vertical urban water assets located in Portugal that were inspected in the scope of the
present study to assess their physical condition and to calculate their average and maximum asset deterioration
index.

• Data set one is used to analyze factors that contribute to asset deterioration, to develop simple and multiple
deterioration models using linear regression analysis and to predict assets service life (results will be presented
in Sections 4.1, 4.2 and 4.4).

• Data set 2 is used to validate the obtained simple and multiple deterioration models of water storage tanks
(results will be presented in Section 4.3).

• Data set 3 is used to discuss the effect of maintenance interventions in improving the service life of vertical
assets and to provide recommendations on the adjustment of deterioration models when applied to assets with
intervention works (results will be presented in Section 4.5).

Table 1 presents the general characteristics of the three data sets. The first comprises 22 water storage tanks and
17 wastewater pumping stations, the second comprises four water storage tanks, and the third comprises two
storage tanks with interventions during their service life.

4. Results
4.1. Analysis of the Factors That Contribute to Asset Deterioration

The factors contributing to the deterioration of water storage tanks and wastewater pumping stations are divided
herein into physical, operational and environmental, following the approach proposed by FCM and NRC (2003)
and Chughtai and Zayed (2008) to describe deterioration factors of water mains and sewer pipes, respectively and

Table 1
General Characteristics of the Three Data Sets

Data sets Assets General characteristics

1 22 water storage tanks Tank capacity (m3): 100–14,000

Number of units: 1–4

Construction year: 1960–2009

17 wastewater pumping stations Flow rate (l/s): 3.7–222

Head (m): 2.2–80

Total hydraulic power (kW): 0.15–28

Construction year: 1975–2016

2 4 water storage tanks Tank capacity (m3): 100–10,000

Number of units: 1–2

Construction year: 1986–2009

3 2 water storage tanks Tank capacity (m3): 800, 150

Number of units: 1–2

Construction year: 1987, 1990

Rehabilitation year: 2015, 2019
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Table 2
Description of Factors That Contribute to Water Storage Tank Deterioration in Data Set 1

Factors Explanation Range in the data set
% of assets from data set 1

(absolute number)

Physical Civil work components
age (years)

The effects of deterioration become more evident over time 11–60 100% (22)

Equipment age (years) The effects of deterioration become more evident over time 5–50 100% (22)

Typology More difficulty in inspecting semi‐buried tanks and some
anomalies may not be detected

Ground 41% (9)

Semi‐buried 59% (13)

Number of units A higher number of units is usually associated with critical tanks 1 32% (7)

2 55% (12)

4 14% (3)

Construction material Prefabricated tanks require good practices to maintain structural
integrity

Reinforced concrete/
Masonry

91% (20)

Prefabricated 9% (2)

Total volume (m3) Higher volumes are usually associated with critical tanks 100–14,000 100% (22)

Operational O&M practice level Insufficient practices can enhance asset deterioration Good 18% (4)

Reasonable 50% (11)

Insufficient 32% (7)

Environmental Distance from the
sea (km)

Coastal zones are more susceptible to biodeterioration due to the
presence of salts

≤5 45% (10)

>5 55% (12)

Traffic Traffic represents a source of pollution that influences asset
deterioration

Low 68% (15)

Medium 32% (7)

High 0% (0)

Table 3
Description of Factors That Contribute to Wastewater Pumping Station Deterioration in Data Set 1

Factors Explanation
Range in the

data set
% of assets from data set 1

(absolute number)

Physical Civil work components
age (years)

The effects of deterioration become more evident over time 4–40 100% (17)

Equipment age (years) The effects of deterioration become more evident over time 0–20 100% (17)

Pump group installation Wet pump groups are more prone to deterioration Wet 76% (13)

Dry 24% (4)

Number of pump groups A higher number of pump groups is usually associated with
critical pumping stations

1 76% (13)

2 24% (4)

Flow rate (m3/s) Higher flow rates are usually associated with critical pumping
stations

0.0037–0.22 100% (17)

Head (m) Higher heads are usually associated with critical pumping stations 2.2–80 100% (17)

Total hydraulic
power (kW)

Higher total hydraulic powers are usually associated with critical
pumping stations

0.15–27.6 100% (17)

Operational O&M practice level Insufficient practices can enhance asset deterioration Good 59% (10)

Reasonable 41% (7)

Insufficient 0% (0)

Environmental Distance from the sea (km) Coastal zones are more susceptible to biodeterioration due to the
presence of salts

≤5 59% (10)

>5 41% (7)

Traffic Traffic represents a source of pollution that influences asset
deterioration

Low 71% (12)

Medium 29% (5)

High 0% (0)
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by Silva and Pietro (2021) to describe deterioration environmental factors (distance from the sea and traffic) of
facade claddings. Table 4 presents the main deterioration factors identified for water storage tanks and their
explanation.

A description of each factor based on Data set one is also presented in Table 4. Each factor can be represented by a
discrete variable (e.g., civil work components and equipment age) or a categorical variable (e.g., typology of the
storage tank and O&M practice level). The relative and absolute frequency of the 22 water storage tanks (Data set
1) are also presented. For instance, the age of civil work components of storage tanks varies between 11 and
60 years representing 100% of studied tanks (i.e., 22 water storage tanks). Regarding the typology, 41% of storage
tanks (i.e., 9 tanks) are ground tanks and the remaining 59% (i.e., 13 tanks) are semi‐buried tanks.

Physical factors are associated with the characteristics of the water storage tanks, including the age of civil work
components and equipment, typology (e.g., ground and semi‐buried), number of units, construction material (e.g.,
reinforced concrete/masonry and prefabricated) and total volume. The operational factors are related to the O&M
practices in water storage tanks, which are divided into three levels, according to Cabral et al. (2022b): good,
reasonable and insufficient. Good practices are related to periodic inspections, cleaning and sanitization at in-
tervals less than or equal to 1 year, periodic preventive interventions, adequate ventilation and monitoring of
water retention time and chlorine decay. Reasonable practices are associated with a periodicity of inspections,
cleaning and sanitization between two and 3 years, reasonable ventilation and thermal insulation and only spo-
radic control of water retention time and chlorine decay. Insufficient practices are related to a periodicity of
inspections, cleaning and sanitization higher than 3 years, no guarantee of adequate ventilation and thermal
insulation and no control of water retention time and chlorine decay.

Environmental factors include two different variables, distance from the sea and traffic. The distance from the sea
is divided into locations in coastal areas (with a distance lower or equal to 5 km) and in inland areas (with a
distance from the sea higher than 5 km). The traffic can be classified into: (a) low traffic, usually related to rural
areas; (b) medium traffic, related to urban areas near major cities; and (c) higher traffic, related to urban areas with
intensive traffic. No inspected water storage tanks were classified with high traffic.

Table 5 describes factors contributing to the deterioration of wastewater pumping stations and the frequency of
inspected assets in which category of different factors. Factors are also divided into the categories of physical,

Table 4
Restricted Simple Linear Regression Deterioration Models for ADIav and ADImax With the Asset Age of Water Storage Tanks and Wastewater Pumping Stations: Model
Parameters and Goodness‐Of‐Fit

Asset Dependent variable (‐) Independent variable Regression coefficient Standard error r2

Water storage tanks (n = 22) Civil work components ADIav Constant (‐) β0 = 11 ‐ 0.67

Age (Years) β̂1 = 0.704 0.04

ADImax Constant (‐) β0 = 19 ‐ 0.34

Age (Years) β̂1 = 1.00 0.11

Equipment ADIav Constant (‐) β0 = 0 ‐ 0.82

Age (Years) β̂1 = 1.17 0.05

ADImax Constant (‐) β0 = 0 ‐ 0.69

Age (Years) β̂1 = 1.45 0.10

Wastewater pumping stations (n = 17) Civil work components ADIav Constant (‐) β0 = 11 ‐ 0.68

Age (Years) β̂1 = 0.96 0.09

ADImax Constant (‐) β0 = 19 ‐ 0.48

Age (Years) β̂1 = 1.16 0.18

Equipment ADIav Constant (‐) β0 = 0 ‐ 0.84

Age (Years) β̂1 = 3.09 0.15

ADImax Constant (‐) β0 = 0 ‐ 0.67

Age (Years) β̂1 = 4.00 0.32

Note. r2—Coefficient of determination.
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Table 5
MLR Models for ADIav and ADImax of Water Storage Tanks and Wastewater Pumping Stations

Asset
Dependent
variable (‐) Independent variable

Regression
coefficient

Standard
error r2 r2adj

Water storage tanks (n = 22) Civil work
components

ADIav Constant (‐) β̂0 = 21.104 2.430 0.90 0.87

Age (Years) β̂1 = 0.619 0.071

Volume (m3) β̂2 = 0.00003 0.0002

Material (1: Prefabricated; 0: Reinforced
concrete/masonry)

β̂3 = − 7.872 3.154

Good practices (1: Yes; 0: No)a β̂4 = − 10.238 2.794

Reasonable practices (1: Yes; 0: No)a β̂5 = − 8.670 2.048

ADImax Constant (‐) β̂0 = 38.75 9.133 0.60 0.49

Age (Years) β̂1 = 0.671 0.267

Volume (m3) β̂2 = 0.0007 − 0.0008

Material (1: Prefabricated; 0: Reinforced
concrete/masonry)

β̂3 = − 21.82 11.85

Good practices (1: Yes; 0: No)a β̂4 = − 30.23 10.50

Reasonable practices (1: Yes; 0: No)a β̂5 = − 10.61 7.698

Equipment ADIav Constant (‐) β̂0 = 1.349 4.032 0.87 0.84

Age (Years) β̂1 = 0.999 0.110

Units (‐) β̂2 = 2.744 1.519

Good practices (1: Yes; 0: No)a β̂3 = − 4.228 3.983

Reasonable practices (1: Yes; 0: No) a β̂4 = − 2.103 3.110

ADImax Constant (‐) β̂0 = − 7.425 7.110 0.81 0.76

Age (Years) β̂1 = 1.237 0.195

Units (‐) β̂2 = 7.979 2.678

Good practices (1: Yes; 0: No)a β̂3 = − 8.304 7.023

Reasonable practices (1: Yes; 0: No)a β̂4 = − 2.714 5.484

Wastewater pumping
stations (n = 17)

Civil work
components

ADIav Constant (‐) β̂0 = 6.830 3.432 0.72 0.67

Age (Years β̂1 = 1.001 0.204

Power (kW) β̂2 = 0.113 0.222

Building (1: Yes; 0: No) β̂3 = 3.887 3.595

ADImax Constant (‐) β̂0 = 9.191 6.062 0.65 0.57

Age (Years) β̂1 = 1.187 0.359

Power (kW) β̂2 = 0.235 0.393

Building (1: Yes; 0: No) β̂3 = 11.835 6.351

Equipment ADIav Constant (‐) β̂0 = 3.103 10.349 0.85 0.81

Age (Years) β̂1 = 3.171 0.397

Power (kW) β̂2 = 0.056 0.456

Number of pumps (‐) β̂3 = − 3.756 8.080

ADImax Constant (‐) β̂0 = 5.280 22.543 0.68 0.61

Age (Years) β̂1 = 4.244 0.865

Power (kW) β̂2 = 0.057 0.949

Number of pumps (‐) β̂3 = − 7.487 17.600
aTo consider insufficient practices, it should be used the value zero in good and reasonable practices.
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operational and environmental and their explanation is also based on the referred three studies, that is, FCM and
NRC (2003), Chughtai and Zayed (2008) and Silva and Pietro (2021). Physical factors are associated with the
characteristics of the wastewater pumping stations, including the age of civil work components and equipment,
type of pump group installation (e.g., wet or dry), number of pump groups, flow rate, head and total hydraulic
power. Operation and environmental factors present the same categories as water storage tanks. None of the
inspected pumping stations was classified with insufficient O&M practices nor high traffic.

Other important factors contributing to the deterioration of the studied urban water assets were not included herein
due to the lack of available information, such as water quality, soil properties and climate conditions. Aggressive
waters can promote the corrosion of materials, and specific properties of soils can also make them corrosive,
namely the presence of hydrocarbons and solvents in the soil. Climate factors, such as wind and rain, are also
relevant to asset deterioration.

4.2. Development of Simple and Multiple Linear Regression Models

Simple linear regression (SLR) models were developed, using Data set 1, to understand the deterioration mech-
anism of civil work components (e.g., walls, mortar, columns, beams, stairs, roof slabs, and expansion joints) and
equipment (e.g., pipes, fittings, valves, pump groups, flowmeters, pressure gauges and transducers), of water
storage tanks and wastewater pumping stations as a function of the asset age. Age is the literature's most cited and
also widely considered deterioration factor of constructed assets (see, for example, Barton et al., 2019). Figure 1

Figure 1. Restricted deterioration models for ADIav and ADImax with the asset age: (a) civil work components of water storage tanks; (b) equipment of water storage
tanks; (c) civil work components of wastewater pumping stations; and (d) equipment of wastewater pumping stations.
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presents the deterioration lines for ADIav and ADImax of civil work components and equipment of water storage
tanks and wastewater pumping stations.

Different factors can affect the initial asset deterioration, contributing to anomalies in the early years of the asset
life, such as the quality of production of materials, conditions of transport and storage or construction practices.
The initial asset deterioration is represented by the intercept regression coefficient (β0), which represents the value
of the dependent variable (ADIav or ADImax) when the independent variable (age) is zero. All the obtained
deterioration lines correspond to restricted models, in which the intercept regression coefficient (β0) is predefined
(a known value), as opposed to the original models in which the regression corresponds to the best fit of the
sample data (i.e., all regression coefficients are estimated). The restricted models are developed to ensure the
physical significance of the models. Considered β0 values will be discussed further on.

The asset age has a negative effect on the asset deterioration indices by increasing their value, that is, higher
deterioration is observed for older assets. As expected, the line for ADImax presents higher values of asset
deterioration than that of ADIav. Furthermore, the line for ADImax has also a higher slope indicating that maximum
deterioration evolves faster than average deterioration and that the difference between the two models increases
with the asset age. These results will influence the predicted asset service life.

Table 4 presents the obtained statistics and SLR (simple linear regression) results of restricted deterioration
models of civil work components and equipment of water storage tanks and wastewater pumping stations for
ADIav and ADImax. These models correspond to the best‐fitted models in terms of goodness‐of‐fit, statistical
significance, and estimated coefficients.

The intercept regression coefficients (β0) of obtained restricted models were calculated by considering the
average value of estimated regression coefficients obtained in the original models for the same dependent var-
iables and the same component categories. For instance, the estimated β0 of the ADIav original model was 14 and 8
for civil work components of water storage tanks and wastewater pumping stations, respectively; allowing to
calculate an average value of 11 which was considered as the β0 of the ADIav restricted models for the same asset
components. Regarding the SLRmodel for the dependent variable of ADImax, the calculated regression coefficient
β0 was 19 for both assets. In the case of equipment of water storage tanks and wastewater pumping stations, the
regression coefficients related to the intercept (β0) are 0, for both dependent variables (ADIav and ADImax). Results
show that the asset deterioration of civil work components of storage tanks and wastewater pumping stations is
not zero in the first year of asset operation (age equal to zero); however, more assets need to be inspected to
increase the data set and to obtain more reliable models.

The restricted models modify the estimation procedure, in which the calculation of the coefficient of determi-
nation and the test of significance should not be equal to the original models. The use of restricted models resulted
in a higher residual sum of squares, and in this case, Kozak and Kozak (1985) suggested the use of the following
equation for calculating the coefficient of determination:

r2 = 1 −
∑(Y − Ŷr)

2

∑(Y − Y)2
(8)

where r2 is the coefficient of determination, Ŷr is the predicted values from the restricted models, and Y is the
mean of the Y observations.

Despite using restricted models, all models present r2 values close to or higher than 0.50 and p‐values approx-
imately close to zero (overall F‐test). The model with the highest determination coefficient corresponds to the
ADIav of equipment of wastewater pumping stations, in which 84 percent of the variations of equipment of
deterioration index are explained by the independent variable (equipment age), since r2 = 0.84. In general, the
models associated with the ADImax have low r2 values when compared to the ADIav since the former dependent
variable presents high variability, as shown in, for example, Figure 1a. The study of the serial correlation of error
terms was carried out through the Durbin–Watson test, whose p‐value is higher than 0.05, corresponding to the
value at which the null hypothesis is not rejected.

Multiple linear regression models consider more than one independent variable to explain the ADIav and ADImax
(dependent variables). Table 5 presents the multiple linear regression models for civil work components and
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equipment of water storage tanks and wastewater pumping stations. The obtained models correspond to the best‐
fitted ones and only consider independent explanatory variables, whose VIF is close to 1, indicating the absence of
collinearity between them.

In general, the obtained models present well‐adjusted r‐squared (equal to or higher than 0.50), p‐values
approximately close to zero (overall F‐test) and p‐values higher than 0.05 in the Durbin‐Watson tests.
Comparing the adjusted r‐squared of the multiple regression models with the r‐squared of the simple regression
models, it can be noted that the results are better in multiple models.

The value of the β0 coefficient in these multiple regression models has no physical significance since, in some
independent variables (e.g., volume in water storage tanks and power in wastewater pumping stations), the zero
value cannot be introduced. Thus, there is no possibility that the value of the ADIav or ADImax can be equal to β0.
However, the multiple regression models should be used with caution, especially if values of independent var-
iables are outside the domains of the variables used in the analysis (see, Table 2 and Table 3).

4.3. Validation of Deterioration Models

Model validation aims to compare the observed values (ADIav and ADImax obtained through inspections) and
the predicted values (ADIav and ADImax obtained through simple and multiple regression models). The two
most common measures to assess and compare the observed and predicted values are the root mean squared
error (RMSE) and the relative absolute error (RAE). Model validation was carried out using a different data
set than the one used to develop deterioration models. Four water storage tanks without major maintenance
interventions (Data set 2) were inspected to identify and classify the anomalies in terms of severity, intensity
and extension and to calculate the deterioration indices. Inspection results of Data set 2 allow the validation of
the proposed methodology and of the obtained deterioration models for water storage tanks. The obtained
deterioration models of wastewater pumping stations were not validated due to the lack of new inspectable
assets.

The RMSE is the square root of the variance of the residuals, and it is scale‐dependent, that is, has the same
units as the dependent variable. This measure assesses how well the model predicts the dependent variable.
Thus, lower values of RMSE indicate a better fit. RMSE shows a variation between 4.6 and 13.6, being low
values in relation to the deterioration scale (i.e., between 0 and 100). The RAE varies between 13% and 39%,
being the highest value associated with the maximum deterioration of civil work components. Comparing the
RMSE and RAE of different models, the simple models present lower values than multiple models. In general,
simple and multiple models of ADIav present lower values of RMSE and RAE than simple and multiple
models of ADImax. This means that simple models have a better predictive power of asset deterioration than
the multiple regression models and that the ADIav models should preferably be used in comparison with the
ADImax models.

4.4. Service Life Prediction

The developed simple (Table 4) and multiple (Table 5) linear regression models, considering 22 water storage
tanks and 17 wastewater pumping stations (Data set 1) and shown in Section 4.2, were used to predict the service
lives of civil work components and equipment of water storage tanks and wastewater pumping stations.

The service lives can be predicted by using the simple linear regression models associated with ADIav (since this
index attends to the overall deterioration of the asset) and by considering the maximum recommended
(ADIav = 40) and the maximum admissible (ADIav = 60) deterioration levels. The graphical interception between
the deterioration levels (40 and 60) and the simple deterioration models allows to predict the service lives as
depicted in Figure 2. For instance, for the civil work components of storage tanks (Figure 2a, represented by the
blue line), ADIav values of 40 and 60 correspond to the age of 41 and 66 respectively; considering that an asset
with these ADIav values has reached the end of its service life, these age values correspond to the predicted service
lives of that asset (if current O&M practices are maintained). Note that ADIav models in Figure 2 were projected
outside the domains of the variable age used in the analysis (see, Tables 2 and 3) to predict the service life; in these
situations, results should be used with caution since no information is available regarding asset deterioration.

Table 6 depicts the predicted service lives of civil work components and equipment of water storage tanks and
wastewater pumping stations using the simple linear regression models and their comparison with reference
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service lives in Portugal. In civil work components of water storage tanks, the predicted service lives are 41 years
considering the maximum recommended deterioration level (ADIav= 40) and 66 years considering the maximum
admissible deterioration level (ADIav = 60). The reference service life in Portugal of these components is
60 years, which is a value between the two predicted service lives.

In terms of equipment of water storage tanks, the predicted service lives are 34 years considering the maximum
recommended deterioration level (ADIav = 40) and 51 years considering the maximum admissible deterioration
level (ADIav = 60). As not all studied storage tanks include an associated pumping station (only 15 of the 22
inspected water storage tanks include a pumping station), the service life of the equipment is greatly influenced by
the pipes, which have a longer service life than the pump groups.

Regarding the wastewater pumping stations, the reference service lives of civil work components (40 years) and
equipment (15–20 years) are between the predicted service lives of 31 and 51 years for civil work components
considering a deterioration level of 40 and 60, respectively; and of 13 and 19 years for equipment considering a
deterioration level of 40 and 60, respectively. The lower values of predicted service lives for the equipment of
wastewater pumping stations compared to the values for water storage tanks can be explained by the influence of
wastewater pump groups that, in some inspected assets, represent the most important component. These results
allowed to validate the reference service lives, which can be used when no information exists regarding asset
deterioration.

Figure 2. Service life prediction using simple linear regression models of ADIav of civil work components and equipment of: (a) water storage tanks; and (b) wastewater
pumping stations.

Table 6
Summary of Service Lives Predicted by Simple Linear Regression and MLR Models and Its Comparison With Reference Service Lives in Portugal

Asset
Dependent
variable (‐)

Maximum
deterioration
level (‐)

Predicted service life by
SLR models (years)

Predicted average service life
by MLR models (years)

Standard
deviation
(years)

Reference
service life
(years)

Water storage
tanks

Civil work
components

ADIav 40 41 41 5.6 60

60 70 74

Equipment ADIav 40 34 35 3.0 20a–50b

60 51 55

Wastewater
pumping
stations

Civil work
components

ADIav 40 30 30 1.9 40

60 51 58

Equipment ADIav 40 13 13 0.4 10–15

60 19 19
aReference service life of water pump groups. bReference service life of pipes (general material).
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Obtained service lives through simple linear regression models are predicted considering only the asset age and
not including the influence of other variables. Besides, one of the most frequent criticisms of the use of deter-
ministic models in the prediction of service lives concerns the achievement of a deterministic value, not
considering the random process of asset deterioration. To fill these gaps, multiple linear regression models are
also used to predict service lives, in which several independent variables allow the prediction of service lives for
assets with different characteristics and sets of in‐use conditions. In order to include the random process of asset
deterioration, it is considered that the regression models of the service lives have an error term with normal
distribution, allowing the calculation of standard deviations.

The inspected assets of Data set 1 are used to predict the service lives considering the multiple regression models
and knowing physical, operational and environmental characteristics. As a result, the relative frequency of
predicted service lives of civil work components and equipment of water storage tanks and wastewater pumping
stations in different age categories are plotted for the two deterioration levels (Figure 3).

Results show a clear difference in the predicted service lives considering the two deterioration levels, similar to
the results of the service life prediction with the simple models. In the case of water storage tanks (Figure 3), 50%
of the inspected storage tanks (11 tanks) present a predicted service life of civil work components between 40 and
44 years considering the maximum recommended deterioration level (ADIav = 40) and of equipment between 70
and 74 years considering the maximum admissible deterioration level (ADIav = 60).

The predicted service lives in water storage tanks are distributed in more age categories than in wastewater
pumping stations, that is, between three and four age categories for the water storage tanks and only one or two for
the wastewater pumping stations (Figure 3).

Figure 3. Relative frequency of predicted service lives using MLR models of ADIav for each deterioration level: (a) civil work components of water storage tanks;
(b) equipment of water storage tanks; (c) civil work components of wastewater pumping stations; and (d) equipment of wastewater pumping stations.
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The predicted service lives of civil work components and equipment of water storage tanks and wastewater
pumping stations using MLR models are also presented in Table 6 for the two deterioration levels. The obtained
values correspond to the average values of services lives obtained for all inspected assets. Results are quite similar
to the values predicted with the simple models. However, the predicted service lives obtained by the multiple
models allow to calculate the standard deviation.

4.5. Study of the Effect of Interventions on Asset Service Life

The development and validation of the deterioration models were carried out with assets without undergoing
major rehabilitation interventions during their service life. Data set 3 is used herein to illustrate and discuss the
effect of maintenance and rehabilitation interventions in improving the service life of vertical assets, corre-
sponding to two storage tanks: one involving major rehabilitation intervention and the other involving mainte-
nance intervention. The first storage tank (ST1) is used to illustrate the application of the obtained deterioration
models before and after rehabilitation and to discuss the improvement of the service life attained with a major
rehabilitation intervention; whereas the second water storage tank (ST2) is used to show the effect of maintenance
interventions on service life prediction and to compare with the results of the ST1 with a major rehabilitation.

4.5.1. Effect of a Major Rehabilitation Intervention

The rehabilitation intervention in ST1 included repairing deteriorated concrete areas, reinforcing steel protection
against corrosion, general painting of structures, rehabilitation and conservation of secondary components and
washing and disinfection of the two units. This rehabilitation intervention had a total cost of 180,000 €, which
represented 48% of the capital cost of civil work components necessary to build a new tank with the same
capacity.

The obtained SLR models were used to predict the average ADI of this storage tank before the rehabilitation
interventions. The predicted average ADI of this tank using SLR models (Figures 1a and Table 4) is 31, corre-
sponding to good condition, and the predicted maximum ADI is 47, corresponding to reasonable condition. The
age of the water storage tank was 28 years when the tank was rehabilitated (in 2015).

The inspection of civil work components was carried out immediately after the rehabilitation intervention. For the
scope of this research work, the visual inspection system was applied using the photographic record of this in-
spection and no anomalies were identified. Thus, the calculated average and maximum ADI is equal to zero,
corresponding to the inexistence of detectable anomalies. The rehabilitation intervention improved the condition
of civil work components, obtaining a better ADI than that predicted by the SLR models for a new asset (ca. +11,
cf. Table 4). However, the deterioration for asset ages below 11 years is unknown and SLR models correspond to
an extrapolation of the obtained model. For that reason, an average ADI of 11 is considered for the civil work
components of the rehabilitated storage tank (i.e., the same value as the average ADI for a new asset).

Figure 4 depicts the deterioration model of the average ADI of civil work components for this water storage tank
before and after rehabilitation intervention and the predicted service lives in both models for the maximum
recommended and admissible deterioration levels. Due to the rehabilitation intervention, whose total cost rep-
resented 48% of the construction cost, the predicted service life of the civil work components should be corrected.
For instance, the predicted service life after the rehabilitation is 69 years (instead of 41 years) considering the
maximum recommended deterioration level and 98 years (instead of 70 years) when considering the maximum
admissible deterioration level, corresponding to an increase of 28 years.

4.5.2. Effect of a Maintenance Intervention

The ST2 was subjected to maintenance intervention. Note that this storage tank was inspected before the reha-
bilitation intervention, while the previous storage tank with major rehabilitation was inspected only immediately
after the intervention. The maintenance intervention in the second water storage tank includes the repair, treat-
ment and waterproofing of concrete surfaces to solve a water leakage caused by cracking, representing only 5% of
its construction cost. Despite the low cost of this intervention, a significant improvement in the condition of civil
work components of this storage tank is observed by the new average ADI value of 22 (represented by the number
2ˈ in Figure 5), compared to the average ADI value, before the rehabilitation, of 47 (represented by the number 1ˈ
in Figure 5).
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The age of civil work components of this water storage tank was 29 years at the date of the rehabilitation
intervention (in 2019), thus, the predicted average ADI by the SLRM is 30, lower than the observed value (i.e.,
47), due to bad construction. The predicted service life of this storage tank after the minor rehabilitation inter-
vention is 53 years considering the maximum recommended deterioration level and 80 considering the maximum
admissible deterioration level, corresponding to an increase of 11 years.

A minor rehabilitation intervention, representing only 5% of its construction cost, allowed to increase the service
life of civil work components by 11 years (corresponding to 18% of the reference service life for these com-
ponents, i.e., 60 years), while a major rehabilitation intervention, representing 48% of the construction cost,
allows to increase the service in 28 years (corresponding to 46% of the reference service life).

These results show that minor and periodic maintenance interventions can maintain the good asset condition and
extend its service life quasi‐indefinitely (even if the sum of the interventions reaches or exceeds the value of the
construction of a new asset). This strategy is preferable to major sporadic rehabilitation interventions, not
ensuring good condition during the asset service life.

Figure 4. Illustration of service life prediction of civil work components of water storage tanks with major rehabilitation
interventions using deterioration models of average ADI (ADI before and after rehabilitation interventions are represented by
numbers 1 and 2, respectively).

Figure 5. Illustration of SLRM adjustment considering minor and periodic interventions and major rehabilitation
interventions.
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Figure 5 illustrates the adjustment of SLRM when maintenance interventions (sometimes referred to as minor
rehabilitation interventions) and major rehabilitation interventions occur.

5. Conclusions
This study aims to propose a methodology for the development of deterioration models and service life prediction
of vertical assets of urban water systems and to demonstrate the application of the proposed methodology using
different data sets. A four‐step procedure for service life prediction is proposed: (a) Asset inspection and dete-
rioration indices calculation; (b) Identification of main factors that contribute to asset deterioration; (c) Deteri-
oration models development and validation; and (d) Service life prediction.

A data set composed of 22 water storage tanks and 17 wastewater pumping stations (Data set 1) was inspected and
used to demonstrate the application of the proposed methodology. Firstly, factors that contribute to the deteri-
oration of water storage tanks and wastewater pumping stations and respective deterioration mechanisms are
analyzed and classified into three categories: physical, operational and environmental. The same case study is also
used to develop simple and multiple linear regression models of average and maximum deterioration of civil work
components and equipment of the studied assets. Most of the obtained simple linear regression models for average
deterioration present determination coefficients higher than 0.6, showing their good predictive power.

The model validation is carried out using a different data set composed of four water storage tanks (Data set 2) to
study the difference between predicted and observed values of ADI considering two measures of goodness‐of‐fit:
root mean square error and the absolute value of the relative error. The simple models have better predictive
power of asset deterioration than the multiple models. Moreover, the ADIav models should preferably be used in
comparison with the ADImax models due to less variability of data.

Service life prediction is carried out using the obtained average deteriorationmodels and considering two different
maximum asset deterioration levels: maximum recommended deterioration level (ADIav= 40) and maximum ad-
missibledeterioration level (ADIav=60).Predicted service lives are comparedwith the referencevalues inPortugal.
These results allowed to validate the reference service lives since these values are similar to the predicted service
lives. Furthermore, predicted service lives through multiple linear regression models are calculated to include the
influence of other variables besides the asset age (i.e., tank volume, constructionmaterial of tank, type of practices,
total hydraulic power and the existence of a building in wastewater pumping stations). A normal distribution of
predicted service lives is considered tocalculate theaverage service life and thedata variability through the standard.

A third data set is used to illustrate and to discuss the effect of rehabilitation interventions on the service life of
vertical assets. Two water storage tanks with different levels of rehabilitation interventions are used, one storage
tank involving a major punctual rehabilitation intervention and the other involving maintenance intervention.
Results show that periodic and well‐established interventions are a preferable maintenance and rehabilitation
strategy over major sporadic rehabilitation interventions since frequent maintenance interventions can maintain
the good asset condition and extend its service life quasi‐indefinitely.

It is important to notice that average and maximum deterioration indices should be calculated, providing com-
plementary information for asset management. The average deterioration value indicates an average degradation,
which is important for asset valuation; however, this value itself is not sufficient to identify critical components of
the assets requiring urgent interventions. Conversely, the maximum deterioration value allows identifying the
assets with the highest failure risk, with components in worse condition, being a more appropriate index for the
prioritization of interventions.

Future works should include the increase of the inspected assets to obtain more robust deterioration models using
linear regression analysis representative of Portuguese utilities and the use of other supervised machine learning
algorithms for service life prediction, such as decision trees and neural networks. Additionally, more case studies
should be analyzed to assess the effect of different maintenance and rehabilitation interventions on the asset
condition (i.e., deterioration indices) and on the asset service life.

Notwithstanding, this study is a step forward in the development of deterioration models and service life pre-
diction of urban water assets reducing the level of subjectivity usually inherent to these approaches. Additionally,
the proposed methodology can be applied to any constructed asset with different infrastructure characteristics and
O&M practices to develop deterioration models and to predict asset service lives in different countries.
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Data Availability Statement
The three data sets include infrastructural, operational and condition data that were provided by water and sewage
utilities anonymously and confidentially, thus data will be available on request.
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