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A B S T R A C T   

Coastal hazards such as flooding and erosion can cause large economic and human losses. Under this threat, early 
warning systems can be very cost-effective solutions for disaster preparation. The goal of this study was to 
develop, test, and implement an operational coastal erosion early warning system supported by a particular 
method of machine learning. Thus, the system combines Bayesian Networks, and state-of-the-art numerical 
models, such as XBeach and SWAN, to predict storm erosion impacts in urbanized areas. This system was 
developed in two phases. In the development phase, all information required to apply the machine learning 
method was generated including the definition of hundreds of oceanic synthetic storms, modeling of the erosion 
caused by these storms, and characterization of the impact levels according to a newly defined eerosion iimpact 
index. This adimensional index relates the distance from the edge of the dune/beach scarp to buildings and the 
height of that scarp. Finally, a Bayesian Network that acted as a surrogate of the previously generated infor-
mation was built. After the training of the network, the conditional probability tables were created. These tables 
constituted the ground knowledge to make the predictions in the second phase. This methodology was validated 
(1) by comparing 6-h predictions obtained with the Bayesian Network and with process-based models, the latest 
considered as the benchmark, and (2) by assessing the predictive skills of the Bayesian Network through the 
unbiased iterative k-fold cross-validation procedure. Regarding the first comparison, the analysis considered the 
entire duration of three large storms whose return periods were 10, 16, and 25 years, and it was observed that the 
Bayesian Network correctly predicted between 64% and 72% of the impacts during the course of the storms, 
depending on the area analyzed. Importantly, this method was also able to identify when the hazardous con-
ditions disappeared after predicting potential consequences. Regarding the Regarding the second validation 
approach, second validation approach, the k-fold cross-validation procedure was applied to the peak of a set of 
varying storms and it demonstrated that the predictive skills were maximized (63%–72%) when including three 
nodes as input conditions of the Bayesian Network. In the operational phase, the system was integrated into the 
architecture of a forecast and early warning system that predicts emergencies in coastal and port zones in 
Portugal, and the alerts are issued to authorities every day. This study demonstrated that the two-phase approach 
developed here can provide fast and high-accuracy predictions of erosion impacts. Also, this methodology can be 
easily implemented on other sandy beaches constituting a powerful tool for disaster management.   

1. Introduction 

Natural hazards are causing gigantic economic losses and they are 
showing an increasing tendency in damages and socioeconomic impacts 
(NOAA National Centers for Environmental Information, 2022). More-
over, with climate change, these negative impacts will be highly exac-
erbated (IPCC, 2012). These unfavorable perspectives represent a big 

challenge for disaster response managers but also an opportunity to 
embrace more robust and efficient management strategies. This has 
instigated the management and scientific communities to pay special 
attention to new approaches such as machine learning (ML) techniques. 
ML is a particular method of Artificial intelligence that consists of a set of 
computer algorithms, methods and tools that aim to accomplish given 
tasks and use data to optimize their performance. Currently, ML is being 
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applied to improve early warning and alert systems, generate hazard and 
susceptibility maps through machine learning-based detection and 
forecast natural hazards, particularly floods, earthquakes, and land-
slides (Kuglitsch et al., 2022; Sun et al., 2020). Also, the expansion of 
quality data including Earth observational data (social media-driven, 
telecommunication data, and remote sensing), and simulation data 
(computational models) represents a crucial aspect for the strengthening 
of ML to estimate disaster-induced impacts (Kuglitsch et al., 2022; Sun 
et al., 2020). 

Coastal scientists are part of this growing machine learning com-
munity and they are applying this technique to support morphodynamic 
studies and sediment transport management. Goldstein et al. (2019) 
reviewed more than 60 publications that investigate coastal sediment 
transport, coastal morphology, and coastal morphodynamics through 
the application of ML techniques. The focus of these studies was the 
supervised learning method that allows for predicting continuous 
dependent variables. Supervised learning connects input and output 
data (e.g., wave forcing and shoreline change) aiming at obtaining a 
model which predicts a dependent variable based on a set of input 
variables. Therefore, such a model can imitate physical process in-
teractions that are either poorly understood or too complex to be 
determined with deterministic models (Goldstein et al., 2019). 

A variety of coastal morphology and morphodynamic models have 
been proposed by using machine learning techniques or combining 
morphodynamic models with machine learning (hybrid models). The 
most common machine learning techniques present in this field are (1) 
Artificial Neural Networks – ANN, e.g., Athanasiou et al. (2022), López 
et al. (2017) and Pape et al. (2010); (2) Genetic Algorithms – GA and 
Genetic Programming – GP, e.g., Goldstein and Moore (2016) and 
Grimes et al. (2015); (3) Multivariate Linear regression, e.g. Bruno et al. 
(2018), Charbonneau et al. (2017) and Garzon et al. (2022a); and (4) 
Bayesian Networks – BNs, e.g., Gutierrez et al. (2011), Plant and 
Stockdon (2012) and Poelhekke et al. (2016). The reader is referred to 
Goldstein et al. (2019) for a comprehensive review of these models. 

Among these techniques, BNs are highly suitable for coastal mor-
phodynamic predictions (Plant and Stockdon, 2012) while being more 
interpretable than other ML methods (Mihaljević et al., 2021). BNs are 
based on a joint probability distribution over the random variables of a 
domain, and hence, they can predict the values of a continuous response 
variable (Mihaljević et al., 2021), namely coastal vulnerability, barrier 
island morphodynamics, shoreline change, beach erosion, etc., given the 
values of some explanatory variables (e.g., oceanic conditions, foredune 
and beach morphology, sea-level-rise rate, etc.). This relation between 
variables can be easily visualized through the graphical representation 
of the network structure. 

In the BNs, the variables are represented as the nodes of a directed 
acyclic graph and its arcs are interpreted as potential dependences be-
tween variables. This structure is normally given by a domain expert 
(Mihaljević et al., 2021). Since nodes are modeled utilizing probability 
distributions, risk and uncertainty can be estimated more accurately 
than in models where only mean values are taken into account, and this 
makes BNs very feasible for modeling environmental systems (Aguilera 
et al., 2011). The conditional probability tables (CPT) of the BNs can be 
learned automatically from modeled or observed data. Once the struc-
ture and CPT of the BN are specified, they constitute a powerful tool for 
inference (Mihaljević et al., 2021). If the structure is relatively simple, 
BNs can predict changes in distributions instantly and can be interpreted 
intuitively (Aguilera et al., 2011). For this reason, BNs have been used 
for coastal risk analysis and early warning systems (Banan-Dallalian 
et al., 2023; Callens et al., 2022; Dongeren et al., 2018; Garzon et al., 
2023a; Jäger et al., 2018; Pearson et al., 2017; Plant and Stockdon, 
2012; Plomaritis et al., 2018; Sanuy et al., 2020; Sanuy and Jiménez, 
2021; van Verseveld et al., 2015) where their learning data can be ob-
tained from observations or numerical simulations. In this latter 
approach, the BN act as a surrogate of the numerical models. 

The goal of this study was to develop, test, and implement an 

operational early warning system (EWS) for coastal erosion in sandy 
beaches supported by machine learning techniques. The philosophy 
underpinning the conceptualization of this coastal erosion EWS was to 
minimize the time employed to create operational warnings while 
providing the end-users robust scientific-based information obtained 
from open sources and state-of-the-art numerical models and data- 
driven techniques. To achieve that, the systems were designed to func-
tion in two different phases, the development phase and the operational 
phase (Fig. 1). In the first phase (the development phase), the storm 
events were schematized, all the numerical model runs were performed, 
the associated impact levels were computed, the Bayesian Network was 
designed and the CPT that link storm characteristics and impacts were 
generated (Fig. 1). The development of this phase drew inspiration from 
the proof of concept study Poelhekke et al. (2016) with important im-
provements such as enhancing the model approach to downscale hy-
draulic conditions from deeper waters, extensive model calibration and 
validation, accounting for hourly predictions instead of only peak storm 
predictions, more sophisticated hazard assessment and larger dataset for 
training. In the second phase (operational), firstly, regional oceanic 
predictions are extracted daily. Then, this information is introduced as 
the explanatory variables into the BN, which acts as a surrogate of the 
previously generated information, and qasi-instantaneously outputs the 
impact levels, which are disseminated among the coastal authorities 
(Fig. 1). Further details of every element of both phases are provided in 
Section 3 and Section 4. Praia de Faro, on the southern coast of Portugal, 
was selected as a validation case. After assessing the suitability of this 
approach, the EWS was implemented in HIDRALERTA (Fortes et al., 
2014, 2020), a forecast and early warning system that predicts emer-
gency situations in coastal and port zones in Portugal. 

2. Study area 

Praia de Faro is an open sandy beach located in a narrow peninsula 
(Ancão) in the westernmost part of the Ria Formosa barrier island sys-
tem, which is located on the southwestern coast of the Iberian Peninsula 
(Fig. 2A and B). Astronomical tides are semi-diurnal, with an average 
range of 1.3 m for neap tides and 2.8 m for spring tides. Also, the 
observed storm surge levels are relatively low (<0.6 m) (Ferreira et al., 
2019) and the corresponding value for a return period of 50 years is 
around 0.7 m (Rodrigues et al., 2012). Therefore, the tides primarily 
dominate the variability of the total water level. Regarding the wave 
climate at Praia de Faro, it is highly influenced by the triangular-shaped 
system of Ria Formosa whose western and eastern flanks present ori-
entations of 128oN and 60oN, respectively (Fig. 2A and B). Thus, this 
geometry makes the study site (in the western flank) more exposed to 
the dominant and more energetic wave conditions (W–SW), while it is 
fairly protected against the less energetic E–SE waves. Praia de Faro 
exhibits a steep and narrow beach face with a single or double berm. 
Sediments are medium to very coarse sand with d50 (median diameter 
particle size) of about 0.5 mm (Vousdoukas et al., 2012). Previous au-
thors have classified the site based on the conceptual model of Masselink 
and Short (1993) as reflective to intermediate (e.g. Almeida, 2007; 
Ferreira et al., 1997; Haerens, 2009). The average beach face slope 
observed by various authors varies between 0.11 (Ferreira et al., 1998) 
and 0.14 (Ciavola et al., 1997). 

The EWS was designed for the stretch of the Ancão peninsula where 
urban development is intense (Fig. 2). The oceanfront is protected by 
rocks (mostly buried by sand) or walls and naturally by a beach-dune 
system. The dune elevation varies alongshore with higher elevation in 
the western sector of the study area. While some edifications were built 
close to the scarp edge in this sector, the natural system has not been 
fully destroyed (Fig. 2C). Conversely, in the parking sector, the dune was 
replaced by houses and infrastructures (Fig. 2D). In the central sector, a 
foredune is minimally present in some portions while in others, it was 
destroyed (Fig. 2E). In the eastern sector, the anthropogenic impact on 
the dune crest is less important and the dune is better preserved than in 
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the two previous sectors (Fig. 2F). This division depended mainly on the 
exposure of the receptors of each sector. 

3. Development phase 

3.1. Storm schematization and boundary conditions 

One of the most important requirements of the BNs is the availability 
of quality data to generate CPT. Here, this information was obtained by 
running calibrated and validated process-based models for a set of 
boundary conditions (BC). Since the BNs need to be trained over the 
whole range of possible events, it was not possible to obtain this infor-
mation from observations and instead, the copula methodology was 
used to create this set of synthetic events (Fig. 1). The methodology to 
create the BC involved the following steps: 

(1) Using a multivariate statistical methodology presented in Poel-
hekke et al. (2016), 300 new synthetic storms represented by Hs, 
Tp, surge and duration were generated (Fig. 3). This approach 
applied the copula technique to account for the natural vari-
ability of the variables. The goodness of the copula behavior was 
carefully evaluated by Poelhekke et al. (2016) for this site, 
revealing a good fit (see Poelhekke et al. (2016) for a detailed 
explanation).  

(2) Obtaining linear adjustments derived from a 20-year dataset of 
measurements at the Faro buoy and Huelva tidal gauge (repre-
sentative of the study site) that explained Tp, storm surge and 
storm duration as a function of Hs, along with the 95% confi-
dence bounds (Fig. 3). This linear dependence (and statistical 
significance), previously noticed also by Poelhekke et al. (2016), 
was only determined for W-SW wave directions since the E-SE 
events cannot create hazardous conditions in the urbanized area.  

(3) Adjusting the copula-generated data. Most of the copula- 
generated variables that represented the storms were within the 
95% observations-derived confidence boundaries (green crosses 
in Fig. 3). Yet, a few cases lay outside of these boundaries, which 
indicated that their probability of occurrence was very low when 

compared to the observed data. This was also noticed by Poel-
hekke et al. (2016) that argued that this was due to the existence 
of unknown asymptotes associated with unknown physical limits. 
Therefore, these cases were adjusted to lay on the 95% confi-
dence bounds obtained in step (2) (grey circles in Fig. 3). This 
procedure was considered appropriate for the purpose of 
adjusting the data from outside the bounds and only affected a 
reduced number of cases (4.3% for the surge variable, mostly 
when Hs < 4.5 m, 2.6% for the duration variable and 0.7% for the 
Tp variable). It is important to note that the linear adjustments 
computed in step (2) were only used to adjust the 
copula-generated data.  

(4) Establishing the oceanic variables used as explanatory variables 
in the BN and their discretization based on the findings of pre-
vious studies (Plomaritis et al., 2018; Poelhekke et al., 2016). 
Therefore, three variables were considered: Hs, Tp, and tide level. 
Regarding their discretization, three bins were used (0.5–1.0 m, 
1.0–1.5 m, and 1.5–2.0 m) for the tide conditions, five 1.5 s-size 
and one 3.0 s-size bins were considered for Tp, and for Hs the 
number of bins considered was ten and the bin size was constant, 
0.5 m (Fig. 4).  

(5) Selecting the storms to be part of the training information. The 
density of events per Hs-Tp pair varied as the copula methodol-
ogy was able to characterize the natural likelihood of occurrence 
of these variables (Fig. 4). To limit the number of storms to be 
simulated, a maximum of four storms per bin was considered 
(blue crosses in Fig. 4). This number was established based on the 
bin size of the Hs and Tp variables and it was in agreement with 
previous studies such as Poelhekke et al. (2016). The selection 
was based on the “k points the farthest apart” criteria, which 
accounted for the normalized distance of four variables such as 
Hs, Tp, surge and duration. Then, the storms whose variables had 
the longest normalized distance between themselves were 
selected to account for the highest storm variability.  

(6) Complementing the copula-generated data. The Hs-Tp pairs with 
no copula data were separated into low occurrence but naturally 
feasible (black circles in Fig. 4) and non-naturally feasible. As BNs 

Fig. 1. Overview of the EWS for coastal zones with the two functional phases.  
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cannot extrapolate beyond the training data, it is very important 
to consider the possible storm conditions. Thus, for the first group 
(black circles in Fig. 4), mainly located above the grey squares in 
Fig. 4, new storms were generated by using the Hs and Tp values 
centered in their pair (Fig. 4, bins with one centered cross and one 
circle). In the second group, the wave steepness would exceed the 
values found in the study area according to the analysis con-
ducted by Mendes and Oliveira (2021), and therefore no BC data 
were generated for those Hs-Tp pairs (Fig. 4, bins without crosses, 
circles or squares). Thus, 138 storms, defined by Hs, Tp, surge and 
duration, were selected.  

(7) Defining the temporal evolution of the storm parameters. After 
obtaining the parameters that characterized a synthetic storm, its 
evolution was schematized following the symmetrical triangular 
shape simplification approach, which assumed a linear increase 
of the Hs and surge, until reaching the peak of the storm at half of 
the storm duration with the subsequent symmetric decrease of 
the Hs and surge level. The peak period during the storm followed 
also a triangular symmetric evolution and the ascendent and 
descendent slopes were calculated assuming a constant wave 
steepness value. This value was computed for the Hs and Tp 
provided by the copula methodology (Plomaritis et al., 2018). 

This approach was already tested and validated for a large storm 
in Praia de Faro (Ferreira et al., 2019; Plomaritis et al., 2019b) 
revealing an overall good performance. Also, in deeper in-
vestigations conducted by Garzon et al., 2023b, it was found that 
the differences in berm and dune retreat between the synthetic 
and real storm accounted for up to 17% and 26% respectively, 
which might be considered acceptable. To compute the water 
levels, three tide elevation timeseries at this site that represented 
from neap to spring tides and whose maximum elevations were 
0.8 m, 1.20 m and 1.56 m above mean sea level (Plomaritis et al., 
2018) were added to the surge evolution. Hence, the water level 
evolution of each storm simulated with XBeach included both 
tide and surge. The timing between the maximum Hs and the 
highest tidal level was set to vary randomly for a period of ±2 
days and the temporal resolution of these synthetic storms was 1 
hour. Therefore, in total 414 synthetic storms (138 storms times 
three tide conditions) were generated to create the BC and each 
set of 138 storms was used to populate each bin of the tide var-
iable in the training process. 

It is important to highlight that for a more efficient implementation 
of the methodology, the duration and surge were not included as inputs 

Fig. 2. (A) The Iberian Peninsula with the blue box highlighting the southern region of mainland Portugal. (B) The numerical model domains and the Faro buoy 
location. Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. Terrain elevation 
and the aerial view of the stretch of Praia de Faro where the EWS was implemented and the four sectors investigated: (C) Western, (D) Parking, (E) Central and (F) 
Eastern. Imagery source: Garzon et al. (2022a). 

J.L. Garzon et al.                                                                                                                                                                                                                               



Coastal Engineering 189 (2024) 104460

5

of the BN, but were internally accounted for in the simulations, with the 
natural variability of these variables being introduced by the copula 
method, as displayed in Fig. 3. By disregarding duration and surge as 
explanatory variables of the BN, the training dataset was reduced and 
therefore the total computational time. Moreover, when the values of 
the oceanic explanatory variables were below the lowest corresponding 
bin of the BN, the impact was assumed to be null (no impact). 

3.2. Hazard numerical modeling 

All developed synthetic storms were implemented into a numerical 

framework formed by SWAN (Booij et al., 1999) + XBeach (Roelvink 
et al., 2009) models that simulated coastal erosion at the site (Fig. 1). 
The model results and the derived impacts were key for creating the 
training for the Bayesian Network, a fundamental aspect for the devel-
opment of a reliable prediction when using machine learning. The 
SWAN (v41.31) model grid covered the entire southern Portuguese coast 
(Fig. 2B) since the domain was laterally expanded to cover large adja-
cent areas to avoid lateral boundary effects in the study area for the 
modeled events (W–SW directions). The model was forced with a 
JONSWAP wave spectra built from the wave parameters and gamma of 
3.3 at the southern oceanic boundary located at 36.905oN and extended 
between 8.95oW and 7.50oW, where the water depth ranged between 
70 m and 700 m with an average depth of 200 m (Fig. 2B). Water level 
variations and wind velocity were not considered in the SWAN simula-
tions. The wave spectral resolution in space was 5◦ and the range of 
frequencies was divided into 34 parts, ranging from 0.0345 s− 1 to 1 s− 1. 
The structured grid resolution was 350 m and 600 m in the cross-shore 
and alongshore directions, respectively. This model was used to propa-
gate and downscale the wave conditions from the Faro buoy (~100 m 
depth) to 25 m depth, where the XBeach offshore boundary was located 
(Fig. 2B). A JONSWAP wave spectra built from the wave parameters 
modeled by SWAN and gamma of 3.3 were used for the offshore con-
ditions of the XBeach simulations. 

Then, XBeach version X 1.23.5526 was used to propagate the wave 
conditions to the shore and compute coastal erosion. To simulate this 
hazard, the surfbeat mode was considered. It solved morphodynamic 
processes, including bedload and suspended sediment transport, dune 
face avalanching, bed update and breaching. The Praia de Faro grid had 
an extension of 3 000 m longshore and 3 900 m cross-shore. The nu-
merical grid was optimized by creating variable longshore and cross- 
shore grid cell spacing. The minimum cross-shore and alongshore res-
olution in the sub-aerial beach were 2 m and 10 m, respectively. Time 
series of water levels were imposed in the offshore boundary of the 
model and cyclic conditions were imposed in the lateral boundaries with 
the longshore gradient set to zero, i.e., there is locally no change in 
surface elevation and velocity (Neumann boundary condition). Roads, 
parking lots, infrastructures and building locations were identified, 
superimposed into the grid cells and set as a non-erodible layer (Fig. 5). 
This model was already calibrated and validated by Garzon et al. 
(2022b) against cross-shore profiles for 16-year and 5-year return period 
storms with Brier Skill Scores higher than 0.80, which indicated excel-
lent performance according to the van Rijn et al. (2003) classification. 
An example of the erosion simulated by the numerical framework for 
one of the synthetic storms is illustrated in Fig. 5, where the four sectors 
are highlighted. The large alongshore variability is associated with the 
existence of beach cusps on the pre-storm morphology. 

3.3. Storm impact assessment 

To establish the potential danger driven by the collapse of buildings 
and infrastructures due to sand removal and destabilization of the 
foundation, four levels of impact have been established (Table 1). This 
classification displayed the traditional color code used in risk assessment 
studies, where green means safe, yellow represents precaution, orange 
indicates potential damage and red illustrates damage. This impact 
category was defined by using the newly proposed erosion impact (EI) 
index presented in Eq. (1). The EI index relates the horizontal distance 
(D) measured from the most seaside non-eroded point of the emerged 
profile (edge) to the target, namely buildings or other constructions 
(Fig. 6), and the height (h) of the dune or beach scarp (Fig. 6) following 
the expression: 

EI index=
D
h

(1) 

The EI index assumed the formation of a vertical scarp, where h was 
computed as the difference in elevations between the edge and the 

Fig. 3. Observed Hs against Tp, surge and duration (red dots) with the fitting 
line that explains the observations and the 95% confidence boundaries. The 
green crosses display all the copula generate data and the grey circles show the 
copula adjusted data (within the 95% confidence boundaries). 

Fig. 4. All copula and adjusted storms (grey squares) characterized by Hs 
against Tp, the low occurrence probability events (black circles) and the 
selected storms to train the BN (blue crosses). 
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elevation of the toe of the scarp (post-storm), as illustrated in Fig. 6. 
Following previous studies (Brodie and Spore, 2015), the toe of the scarp 
after the storm was defined as the location of maximum positive 

curvature of the emerged eroded profile. Identifying the location of the 
dune toe can be very challenging and some authors have recognized 
limitations in the methods to automatically determine the coastal dune 
seaward boundary (Smith et al., 2020). However, without any addi-
tional information such as vegetation line or aerial or oblique images, 
the point of maximum curvature between the shoreline and dune crest 
can be a good indicator of the dune toe (Smith et al., 2020). Therefore, 
this approach is suitable and consistent as it easily allows for repeat-
ability, without incorporating any human bias and intervention (vital in 
an operational system). Unlike previous studies (Sanuy and Jiménez, 
2021), the proposed index assumed the hypothesis that both variables (a 
combination of D and h) can affect the structural stability of construc-
tions. For example, for a D equal to 4 m, h values of 0.3 m and 1 m would 
result in no impact and moderate impact, respectively. For enhancing 
security, a conservative minimal h was set to 0.1 m to avoid cases where 
low values of h can increase the value of the EI index, and thus lead to an 
exaggerated reduction of the impact level prediction. Within each sector 
of the study area, the EI index was calculated at several cross-shore lo-
cations where the targets were highly exposed. Then, the lowest EI index 
was selected to characterize the impact along the entire sector. 

The thresholds depicted in Table 1 were used to transform the haz-
ards into impacts and were established based on the authors’ judgment 
and after analyzing historical events and their impacts and consequences 
at Praia de Faro (Almeida et al., 2012; Ferreira et al., 2019; Garzon et al., 
2022b). After the BC were generated, the 414 model runs were executed, 
the EI index for each sector was computed and the associated impacts 
were established based on the thresholds presented in Table 1, all the 
necessary information to develop the CPT of the BN was gathered. This 
information constituted the ground information of the BN-based EWS. 

3.4. Bayesian network structure 

The construction of the Bayesian Network required the definition of 
the input variables (nodes) and the dependencies between the variables 
(arcs). The direction of an arc, from so-called parent to child variables, 
represented the direction of influence. The BN design included four 
categories of variables: boundary conditions, receptor sector, hazards 

Fig. 5. Example of an XBeach model run. Warm colors represent erosion and cold color deposition. The black line displays the boundary of the non-erodible layer.  

Table 1 
Impact level definition and the associated thresholds.  

Impact Level EI index 

No Impact (Safe) > = 7.5 
Low Impact (Precaution) ≥5.0 and <7.5 
Moderate Impact (Potential damage) ≥2.5 and <5.0 
High Impact (Damage) <2.5  

Fig. 6. Representation of the variables (D and h) involved in the calculation of 
the EI index. 
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and impacts. All BC and receptor sectors were mutually independent, 
while hazards and impacts were conditioned by their parents. This 
structure was based on the same principles as other BNs developed in 
previous studies at Praia de Faro (Poelhekke et al., 2016). The BC (blue 
boxes in Fig. 7) were represented as storm scenarios derived from a 
multivariate statistical analysis and divided into bins, as presented in 
section 3.1. The receptor sector (Fig. 2C–F and grey box in Fig. 7) was 
defined as a node that represented the location within the imple-
mentation area (Fig. 2). The EI index (hazards) corresponds to the yel-
low box in Fig. 7, whose bin sizes were defined based on the thresholds 
shown in Table 1. Finally, the impact level (green box in Fig. 7) indicates 
the impact level for specific BC and each sector. Therefore, the parent 
nodes such as tide level, Hs, Tp and sector, conditioned the EI index 
node, which itself conditioned the child node impact level. Then, the 
information generated in the previous sections (BC, sectors and impact 
levels) was used to train the BN and compute the CPT derived from joint 
probability distributions (Fig. 1) following the method described in 
Jäger et al. (2018). These CPT were written in text files. The training of 
the BN and computation of the CPT based on simulated impacts was the 
basis of the surrogate method that supported the EWS. Thus, for each set 
of initial oceanic conditions (i.e. waves and tide level) the final result 
(impact level) was provided by the BN, including the probabilities of 

occurrence as illustrated for a particular example in Fig. 7. The visual-
ization of the BN structure and the probabilities can be made through the 
graphical interface of the software Genie, which is freely available for 
academic research from BayesFusion, LLC (https://www.bayesfusion. 
com/). 

3.5. Performance assessment of the surrogate method 

The methodology behind the surrogate method, from the boundary 
condition generation up to the design, construction and training of the 
BN was validated by using two approaches based on: (1) a comparison of 
hourly BN and numerical model results for three large storms and (2) 
cross-validation for the peak of the storm. 

3.5.1. Hourly comparison 
Storm Emma with a 16-year return period event (Ferreira et al., 

2019) and the 10-year and 25-year return period synthetic storm events 
were used to validate the proposed methodology. These two synthetic 
storms were created by considering the relationship between Hs and the 
rest of the variables defining a storm namely Tp, surge and duration 
(Garzon et al., 2023b). The Hs for each return period was obtained from 
previous studies such as Pires (1998). These three storms were 

Fig. 7. Bayesian network structure including the boundary conditions (blue), sectors (grey), the hazard characterized as EI index (yellow) and the impact level 
(green). The selection of the BC corresponds to the peak of the storm Emma. 

J.L. Garzon et al.                                                                                                                                                                                                                               

https://www.bayesfusion.com/
https://www.bayesfusion.com/


Coastal Engineering 189 (2024) 104460

8

implemented in the process-based numerical model framework pre-
sented in Section 3.2, the EI index was computed and the associated 
impact levels were predicted every hour (hereafter referred to the 
non-surrogate method). Importantly, in the numerical simulations, if the 
EI index did not change over two or more consecutive hours, the 
considered impact was null except for the first hour which was calcu-
lated according to Table 1. Also, when the EI index reached a value of 0, 
high impacts were still predicted for the following hours if the scarp toe 
modified its elevation. This was necessary because infrastructures and 
houses were modeled as a non-erodible layer, and thus, the erosion 
cannot increase further beyond. This was especially relevant for the 
parking sector. This validation approach also allowed us to validate the 
timing of the impacts. 

For validation, those impacts predicted by the non-surrogate method 
were compared against the impacts predicted by the BN (hereafter 
referred to the surrogate method). To this end, the same hourly storm 
conditions (tide level and wave parameters) were used as BC (explana-
tory variables) to predict the impacts. In the surrogate method, each 
hourly condition was considered as an independent storm. For example, 
at a given time during the course of the storm, the conditions could be 
Hs = 4.1 m, Tp = 10 s, and the tide level = 0.9 m. Thus, these values 
would be used to condition the BN and obtain a prediction. It means that 
this prediction was based on the training information from a set of 4 
storms simulated with neap tides and whose max Hs varied from 4 m to 
4.5 m, max Tp varied between 9 s and 10.5 s and each storm had a 
specific duration and surge given by the copula. Also, these simulations 
were initialized with a pre-storm profile. 

It is important to mention that while the numerical framework 
provided deterministic results, the results of the BN were stochastic, i.e., 
in terms of probability distributions. However, for operational purposes, 
the impact level predicted by the BN was defined as the maximum level 
with a percentage of probability higher than 0%, if the addition of the 
remaining probabilities is lower than 66%. In the case that this condition 
was not satisfied, the impact level dropped one level. For instance, if the 
probability of a high impact was 50% and the probability of a low 
impact was 50%, then the released warning would be a high impact. 

Nevertheless, if the probability of a low impact was 75% and the 
probability of a high impact was 25%, then the released warning would 
be a moderate impact. After testing several alternatives (not shown 
here), it was concluded that these criteria and conditions yielded the 
most accurate results when compared with the non-surrogate method 
for the three storms analyzed. Moreover, in order to simplify the 
warnings and facilitate the implementation of risk-reduction measure-
ments, the BN predictions were integrated by selecting the highest 
impact level for a period of 6 hours centered on the peak of the tide level 
(i.e., 2 hours before, 1 hour representing the high tide and 3 h later). 

The 6-hour integrated impact levels (the highest level in the grey 
areas in Fig. 8, Figs. 9 and 10) computed using the direct results of the 
non-surrogate method, here considered as the reference, were compared 
against the impact level predicted by the surrogate method in the four 
sectors for the three storms. For storm Emma (Fig. 8), the surrogate 
method overpredicted the impact in one level (low against no impact) in 
the parking sector during the first integrated time, while the rest of the 
sectors maintained safe according to the predictions of both approaches. 
For the second integrated time, additional low impacts were predicted 
only by the non-surrogate method in the western sector. In the parking 
sector, the predictions provided by both methods reached high impact. 
In the remaining sectors, both methods predicted no impact. For the 
third integrated time, the parking and central sectors were under high 
impact conditions, the western sector under low impact conditions and 
the eastern was safe according to the non-surrogate method. The sur-
rogate method displayed similar impacts in the parking and central 
sectors, and overpredictions for two levels in the western sector and one 
level in the eastern sector. In the last integrated time, the surrogate 
method predicted a high impact for all sectors except for the eastern 
sector (no impact). The non-surrogate method predicted similar impacts 
in all the sectors except in the western sector. Outside the integrated 
time, the surrogate method always predicted no impact because the tide 
level was below 0.5 m (the value of the first bin) while the numerical 
modeling method predicted no impacts because the EI index did not vary 
and the scarp toe elevation was invariant. 

Regarding the 6-hour integrated predictions of the synthetic events, 

Fig. 8. Storm Emma. Hourly impact level computed directly by the process-based numerical model or non-surrogate method (red bar) and surrogate method (blue 
bar) in the four sectors. The hours correspond to the beginning of the storm. The bottom plot displays the impact predicted by the surrogate method integrated on the 
6 hours centered in the high tide, corresponding to the final alert level of the EWS. 
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it was found that for the 10-yr event (Fig. 9), the parking sector was the 
first area to be impacted according to the surrogate method (moderate) 
in the first integrated time. At the second integrated time, both methods 
predicted high impact in the parking sector, and no impact in the 
western, central and eastern sectors. For the third integrated time, at the 
peak of the storm, the surrogate method anticipated a high impact in 

three sectors, namely western, parking and central, and low impact in 
the eastern sector, while the non-surrogate method predicted one level 
lower in the western, central and eastern sectors and a similar level in 
the parking sector. The predictions of the surrogate method for the 
fourth integrated time matched the reference in the western, parking 
and eastern sectors and underpredicted the reference by two levels in the 

Fig. 9. 10-year event. Hourly impact level computed directly by the process-based numerical model or non-surrogate method (red bar) and surrogate method (blue 
bar) in the four sectors. The hours correspond to the beginning of the storm. The bottom plot displays the impact predicted by the surrogate method integrated on the 
6 hours centered in the high tide, corresponding to the final alert level of the EWS. 

Fig. 10. 25-year event. Hourly impact level computed directly by the process-based numerical model or non-surrogate method (red bar) and surrogate method (blue 
bar) in the four sectors. The hours correspond to the beginning of the storm. The bottom plot displays the impact predicted by the surrogate method integrated on the 
6 hours centered in the high tide, corresponding to the final alert level of the EWS. 
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central sector. In the last integrated time, both approaches predicted no 
impact in the western, central and eastern sectors, while the reference 
was underpredicted by one level in the parking sector (high impact 
against moderate impact). 

For the 25-yr event (Fig. 10), the surrogate method anticipated 
moderate impact in the parking sector during the first integrated period, 
while the non-surrogate method predicted no impact. Both methods 
estimated no impact in the remaining sectors. During the second inte-
grated time, both methods estimated the same impacts in the four sec-
tors (high impact in the parking and no impact in the other sectors). In 
the third integrated time, both methods predicted the same impact only 
in the parking sector. The non-surrogate method predicted moderate 
impact (western and central sectors) and no impact (eastern sector) and 
the surrogate method overestimated those predictions on one level. In 
the fourth integrated time, the peak of the storm, both methods esti-
mated moderate impact in the eastern sector and high impact in the 
others. In the fifth integrated time, the surrogate method matched the 
reference in the western, parking and central sectors (high impact) and 
underpredicted the reference by one level. In the sixth integrated time, 
both methods agreed in their predictions in three sectors (no impact in 
the western and eastern sectors and high impact in the parking) but their 
prediction deviated in the central sector: no impact (surrogate method) 
against high impact (reference). In the seventh integrated time, the 
surrogate method underpredicted the reference by one level (moderate 
against high impact) in the parking and by three levels (no impact 
against high impact) in the central sector. In the last integrated time, the 
reference predicted high impact and the surrogate method no impact in 
the parking sector. In the remaining sectors, both predicted no impact. 

To further analyze the predictive skills of the surrogate method, the 
6-hour integrated predictions provided by this method were compared 
with the equivalent 6-hour integrated predictions of the non-surrogate 
method. This analysis accounted for 17 tidal cycles (4 + 5+8). In gen-
eral, the ability of the surrogate method to agree with the non-surrogate 
method for these three events was very positive (Fig. 11) as the accuracy 
(defined as the match cases divided by all cases) of the 6-hour integrated 
surrogate method predictions ranged between 64% (parking) and 76% 
(eastern). Also, the parking and central sectors obtained more cases of 
underprediction 18%, while in the remaining sectors, the under-
prediction cases were only 6%. If all sectors and storms were combined, 
71% of the cases would match the reference, 19% of the cases would be 
subject to one level of underprediction or overprediction and 10% of the 
cases would experience more than 1 level of overprediction or under-
prediction. Regarding the high impact level, the recall (defined as the 
relative number of observations that were correctly predicted) varied 
among sectors with values of 100%, 78% and 67%, in the western, 
parking and central sectors respectively (high impact level was not 
predicted either by the surrogate and non-surrogate method in the 
eastern sector). The precision that expresses the relative number of 
correct predictions ranged from 40% in the western, 100% in the 
parking and 67% in the central sector for the high impact level. A more 

detailed analysis with more statistical skills separating by sectors and 
levels of impact is shown in the Supplementary material as long with 
confusion matrixes for the hourly comparison. 

3.5.2. Peak of the storm 
In this second approach, the widely used k-fold cross-validation 

(Fienen and Plant, 2015) method was followed to assess the predictive 
and descriptive skills of the model. According to Beuzen et al. (2018), 
predictive skill indicates the ability of the model to correctly predict 
events that it has not been trained on, and descriptive skill means the 
ability of the model to correctly ‘re-predict’ events that it has already 
been trained on. In the present study, for the computation of the pre-
dictive model skills, the BNs were trained with nine folds and their re-
sults were tested with the remaining fold (unseen data), while for the 
descriptive analysis, the BNs were trained with ten folds and tested with 
one fold (seen data). This exercise was repeated ten times. Finally, the 
skills (correct answer/total answer) for each individual fold, were 
averaged to obtain the final model skill. In order to determine the 
appropriate number of input nodes for BC, three BN configurations were 
evaluated: two input nodes (Hs, tide level); three input nodes (Hs, tide 
level, Tp) and four input nodes (Hs, tide level, Tp and Duration, where 
Duration was discretized in four bins) and the corresponding overfitting 
ratio (number of runs/number of BN bins, child and parents, required to 
be learned) was computed. 

According to the 10 iterations of the 10-fold cross-validation per-
formed, descriptive model skills were better than the predictive model 
skills (for more than two input nodes) and the skills increased with the 
number of nodes (lower overfitting ratio) as displayed in Fig. 12, 
regardless of the sector. Conversely, the predictive skills did not neces-
sarily improve when increasing the number of nodes. Thus, including 
the duration node contributed to increase descriptive model skill but the 
predictive model skills were worse than when comparing to the three 
node configuration. Beuzen et al. (2018) explained this fact due to a 
reflection of the model overfitting. They found that with values lower 
than 1, their BN models become increasingly overfit and that the pre-
dictive skill was maximized at an overfitting ratio of approximately 3. In 
the current work, the predictive skill was maximized at an overfitting 
ratio of approximately 1 (Fig. 12). Furthermore, the predictive model 
skills varied between 60% and 70% for the four sectors for the thee input 
node configuration (Fig. 12). This was similar to the accuracy obtained 
by previous works. For instance, Beuzen et al. (2018) found a maximum 
prediction skill of 65% and they noticed that their predictive skills were 
comparable to others reported in other BN coastal studies (Hapke and 
Plant, 2010; Palmsten et al., 2014) which varied the number of input 
nodes and training data sizes. 

4. Operational phase 

After the completion of the development phase and its verification, 
the operational phase can be initiated. This operational phase does not 

Fig. 11. Overall performance assessment of the surrogate method in the four sectors taking into account a set of 17 predictions.  
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require any human intervention and it is an example of an autonomous 
ML-based EWS. It consists of four main steps: downloading and 
extracting the oceanic forecasts, introducing these variables into the 
previously trained BN, obtaining the impact predictions and dissemi-
nating the early alerts via email among the final end-users (Fig. 1). The 
completion of these four steps requires only a few minutes. A set of 
python scripts were developed to automatize the entire process and 
implement the EWS within the HIDRALERTA architecture. The hourly 
impact predictions are produced following the same approach presented 
in the validation section for the surrogate method and are anticipated for 
the following 72 hours. Then, they are integrated for a period of 6 hours 
and released once every day with the latest oceanic forecast information. 

The impact predictions at Praia de Faro depend on two types of input 
conditions. Firstly, estimations of hourly tide levels provided by XTide 
(www.flaterco.com/xtide) are extracted at the position “Faro – Olhao” 
for the next 72 hours every day. Secondly, wave parameters, such as 
spectral significant wave height, wave spectrum peak period and wave 
direction, forecasted by Puertos del Estado – IBI system (http://opend 
ap.puertos.es/thredds/fileServer/wave_regional_ibi/HOURLY/) are 
downloaded. This information can also be obtained via Atlantic-Iberian 
Biscay Irish- Ocean Physics Analysis and Forecast from the Copernicus 
Marine Service. The model data has a grid format with a resolution of 
0.0833◦ and the forecast information of the four nodes surrounding the 
location of the Faro buoy is extracted. Then, these four values are 
average, and this information is introduced into the BN to predict the 
impacts at each sector of Praia de Faro. 

Usually, BNs work with a graphical interface that allows the user to 
define the input conditions and infer the results in the same interface. 
However, for automatized operational purposes, the CPT of the BN 
generated during the development phase must be autonomously read 
and the probabilities of each impact level associated with a specific 
sector and the corresponding BC (wave height, peak period, tide level) 
must be extracted. The wave direction is used to separate between W-SW 
(≥180◦) and E-SE events (<180◦). Storms coming from E-SE are 
neglected because they cannot create hazardous conditions due to the 
extreme refraction and the relatively short period, and therefore, their 
associated impact level is no impact. After the extraction of the proba-
bilities, the criteria and conditions explained in Section 3.5 were applied 

in order to deterministically consider the alerts. Furthermore, the impact 
predictions were integrated for an interval of 6 hours centered on the 
peak of the tide level. After that, the impact alerts at each sector for the 
next 72 hours are converted to a color code (Table 1) for a simplified 
visualization. Finally, this information is printed in a bulletin (see 
Fig. 13) and disseminated to authorities responsible for the imple-
mentation of risk reduction measures. 

The alerts generated by HIDRALERTA for Praia de Faro are only 
disseminated among the authorities and they are not available to the 
general public. Thus, several end-users or entities with authority to 
implement or coordinate risk-reduction measures namely the Civil 
Protection of Faro council, the national and regional divisions of the 
Portuguese environmental agency (APA) and the Port of Faro are 
currently receiving this information via email daily. Such information 
can, however, be made totally or partially available (a larger number of 
entities), depending on the authorities’ policy for each coastal area. In 
that case, a graphical user interface must be built which the users must 
access for proper dissemination of the alerts. 

Fig. 12. Analysis of the BN predictive and descriptive skills as a function of the number of boundary conditions nodes and sectors.  

Fig. 13. Illustration of an alert created by the coastal component of HIDRA-
LERTA for Praia de Faro (erosion) for the same conditions represented in Fig. 7 
and the four sectors. The date and time are merely illustrative. 
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5. Discussion 

5.1. AI for EWS for coastal hazards 

Identifying coming natural disasters and releasing early warnings are 
very cost-effective solutions for disaster preparation (Sättele et al., 
2016). ML techniques can serve as a suitable manner to anticipate the 
coming risks and build efficient forecast systems for natural hazards 
including extratropical storms (Krishnamurti et al., 2016), precipitation 
(Shi et al., 2015), earthquakes (Asim et al., 2017), rainfall (Kim et al., 
2022), flash-floods (Mane and Mokashi, 2015), coastal flooding 
(Chondros et al., 2021), tsunamis (Lamsal and Vijay Kumar, 2020), and 
landslides (Terranova et al., 2015), etc. For coastal hazards, in partic-
ular, the development of EWSs supported by machine learning has 
mainly focused on inundation caused by tsunamis and coastal storm 
flooding. For tsunamis, several studies have applied machine learning 
for forecasting and early warning prediction of this hazard and the 
associated impacts in coastal communities (Fauzi and Mizutani, 2020; 
Liu et al., 2021; Makinoshima et al., 2021; Mulia et al., 2022). For 
coastal flooding, there are also several examples of ML-based prediction 
systems (Callens et al., 2022; Chondros et al., 2021; Denamiel et al., 
2019; Dongeren et al., 2018; Fortes et al., 2014; Garzon et al., 2023a; 
Idier et al., 2021; Pearson et al., 2017). For coastal erosion, while some 
EWSs have been constructed and implemented (Barnard et al., 2014; 
Harley et al., 2016; Seok and Suh, 2018; Valchev et al., 2014), they don’t 
consider the utilization of any ML technique. However, some authors 
(Plomaritis et al., 2018; Poelhekke et al., 2016; Santos et al., 2019) have 
demonstrated the suitability of BN to support coastal erosion EWSs. 
Thus, the present study was inspired by these previous studies to create a 
novel EWS for coastal erosion in sandy beaches and corroborated their 
outcomes. 

5.2. Capabilities for EWS and potential upgrades 

The methods exploited in the development phase were based on the 
work presented by Poelhekke et al. (2016) and utilized their findings for 
the development of an EWS, although important improvements have 
been included. (1) The XBeach model built by Poelhekke et al. (2016) 
only considered up to 20 m depth, but for the development of an EWS, it 
would be preferable to downscale the hydraulic conditions from deeper 
waters. Regional operational forecasts that can be used to condition the 
BN usually face more problems providing reliable predictions near the 
coast than offshore. In the present study, it has been improved by 
incorporating a SWAN model coupled with XBeach to generate the 
training information. This allows the conversion of the hydraulic con-
ditions at 100 m depth in erosion impacts at the coast. (2) The accuracy 
of the EWS predictions fully depends on the accuracy of the XBeach 
simulations. The XBeach model used in the present study was developed 
by Garzon et al. (2022b) and included a detailed calibration, the addi-
tion of new model features and model parameters (non-erodible layer 
and the upslope transport term for semireflective beaches so-called 
bermslope), an updated topo-bathymetry from 2018 with new ele-
ments of the urbanized area and lateral model expansion to cover the 
entire urbanized area. Garzon et al. (2022b) validated this model against 
post-storm topographical measurements at five locations for a 16-year 
return period event and four locations for a 5-year return period event 
with a qualification of excellent according to the van Rijn et al. (2003) 
classification. This upgrading of the numerical model represents a large 
improvement with respect to previous models developed in Praia de 
Faro in Poelhekke et al. (2016). (3) Another novel aspect of this study 
was the development of hourly and time-integrated predictions since 
previous studies have not dealt with the timing and evolution of the 
storm impacts. (4) The definition of the EI index (as a proxy for coastal 
erosion) and the characterization of the impacts through its limits shown 
in Table 1 were novel since a quantitative and qualitative definition of 
the impacts is not often provided in this type of studies. (5) In the present 

study, the number of synthetic events for training the BN was higher 
than in previous studies developed at Praia de Faro, with a reduction of 
the bin size of the Hs and Tp variables for a better characterization of the 
oceanic conditions and thus lower spread of the probability distributions 
of the impact predictions. 

Making accurate predictions with AI techniques typically requires a 
large amount of good data. The developed prediction system presented 
in this study combines ML techniques with morphodynamic models to 
implement a reliable and efficient EWS for coastal erosion in sandy 
beaches. Since storm impact observations that cover a long period are 
not available at the study site (nor at most sites worldwide), process- 
based modeling was used instead to generate this information. There-
fore, this approach accounted for the dominant physical mechanisms 
that govern wave propagation and transformation and morphological 
evolution to make predictions of storm impacts on sandy beaches, as an 
alternative to other more computationally efficient, but less accurate 
methods such as the Convolution or the ShoreFor model (Plomaritis 
et al., 2019a). 

The inclusion of all generated data into the AI technique to auto-
matically and quasi-immediately provide storm impacts was a key 
aspect to guarantee the release of alerts in a short period of time between 
the successively updated wave forecasts. Whether a non-surrogate 
method would have been implemented, simulating 72 hours of erosion 
by running SWAN + XBeach would take more than 6 hours on four 
logical processors in a 1600x Six-Core Processor, 3600 Mhz workstation. 
Wave operational models that can be employed as BC offer a 3–5 day 
forecast window (at least with a certain degree of reliability) and they 
are updated every 12 or 24 hours. Thus, coastal erosion model simpli-
fications to increase the EWS operability should have been considered 
since most probably the results of a complex modeling approach would 
not be available at the time of issuing the alerts that account for the 
updated BC. Moreover, the construction of the EWS in two separate 
phases also contributes to simplifying the maintenance of the system and 
limiting the computational power required to operate the system since 
most of the modeling efforts are undertaken beforehand. This method-
ology developed here was implemented in Praia de Faro, but it can be 
transferred to other sandy beaches with some adaptations to the local 
characteristics such as the definition of the synthetic storms, the choice 
of the regional forecast system to condition the impact predictions or the 
selection of the most appropriate beach morphology. 

Importantly, the EWS structure enables the development and oper-
ational phases can be built on different machines increasing the flexi-
bility for its implementation. Another advantage of the developed BN- 
based EWS is that new modules and information can be generated 
independently and added to the existing system. For instance, if new 
nodes and bins are necessary, then the BN can be extended. All runs 
could be performed outside the system, train the BN, and afterward 
implement and update the EWS. This includes the possibility of inte-
grating different beach morphologies, and wave and sea level conditions 
in a flexible way. As the reliability of the BC prediction might increase in 
the future (namely for wave forecast) the output of the EWS can be also 
extended in time, from the current 72 hours to a longer limit without 
compromising the execution time of the operational phase. 

The complexity of the used surrogate method can also be increased. 
Social behaviors can be tested and incorporated as nodes of the BN, 
being, therefore, this aspect considered on the risk level assessment. 
Moreover, different levels of potential occupation can be included, for 
instance integrating the expected beach occupation as a function of the 
hour (e.g. morning, afternoon, night) or the weekday (e.g. weekend 
versus working day). Therefore, all this can be incorporated into the 
already developed ML scheme and still quasi-immediately provide re-
sults, after the implementation of such adjustments on the BN-based 
EWS. 
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5.3. Uncertainties and limitations 

Relevant variables of a storm for driving coastal erosion such as 
duration and surge were not explicitly included in the BN, but the copula 
methodology exploited here to generate the synthetic storms attempted 
to characterize their natural variability. This largely reduced the number 
of runs to be simulated and thus it had a significant impact on the time 
devoted to modeling coastal erosion on the numerical framework and 
generating the training information. The downside of this approach was 
that some uncertainty was added to the predictions, especially for 
extreme events where storm duration can regulate the capacity of the 
dune to withstand or be dismantled (Garzon et al., 2023b). However, 
this uncertainty was reduced by considering up to four storms per Hs-Tp 
bin to train the BN, since the more runs were added, the better the 
natural variability was captured. Another important aspect was that the 
temporal variation of the bulk parameters of the storms was assumed to 
follow a symmetric triangular evolution. It was made based on the nu-
merical experiments performed by Garzon et al. (2023b) that found this 
approach can appropriately replicate the erosion caused by large storms 
in Praia de Faro. On the other hand, other authors (Duo et al., 2020) 
have questioned the validity of the symmetric triangular approach to 
imitate the impact of real storms stating that it increases the error of the 
prediction when compared to the modeling of the actual shape of the 
storm. However, for the development of this type of EWS where the 
storms are previously modeled, it is impossible to know in advance the 
storm shape, and assumptions like the triangular shape (or other) must 
be made. 

The EWS does not consider an updated topography when initializing 
the model simulations. This can arise another source of uncertainty in 
the EWS predictions since variations between the actual pre-storm 
topography and the one considered in the XBeach simulations can be 
found. Previous studies (Beuzen et al., 2019; Garzon et al., 2022a; 
Garzon et al., 2023b) have highlighted that beach width and sediment 
volume of the aerial beach can control the post-storm profile, and thus, 
these variations can lead to differences in the response of the beach dune 
systems. Here, the profile implemented in the numerical model corre-
sponded to a set of measurements carried out in late 2018. The field 
campaign was conducted several months after the impact of the storm 
Emma when the profile had already recovered almost its entire volume. 
Therefore, the pre-storm topography implemented in the numerical 
model corresponded to a beach morphology under non-erosive condi-
tions. Malvarez et al. (2021) declared that Praia de Faro has a good 
ability to recover from the impact of large storms (more than 70% re-
covery in one month) and it would indicate that the uncertainty asso-
ciated with the pre-storm morphology would be lower in comparison 
with other sites with longer periods to recover its pre-storm morphology. 
Nevertheless, in case the site is impacted previously by an energetic 
storm without sufficient time to recover before the impact of a second 
storm, it can propagate uncertainties in the simulated dune retreat of 
around 14%–41% and up to 88% of the berm retreat, depending on the 
storm severity (Garzon et al., 2023b). The best solution would be to test, 
model and implement the storm impacts for several different beach 
profiles at the BN, and then select the beach profile most similar to the 
existing one at each time (this would also require continuous beach 
monitoring in the considered sectors). 

Obtaining continuous topographical measurements of the beach 
profile during a storm is a very challenging task, and therefore the au-
thors used instead a calibrated and validated numerical model frame-
work (non-surrogate method) to assess the predictive accuracy of the 
Surrogate method. As displayed in Fig. 11, the Surrogate method pre-
dictions achieved a good level of agreement when compared to the non- 
surrogate method for the four sectors evaluated within the integrated 
time. Moreover, for the implementation in an EWS, the surrogate 
method would be also appropriate since it can identify the specific hours 
when there was a direct action with potential consequences and when 
the hazardous conditions disappeared. The purpose of conventional 

warning systems would be to alert only when the risk will occur, but 
these prediction systems do not release an alert due to risks that can 
remain on the site for hours or even days as a consequence of hazardous 
past conditions. 

The variation of the impact level predicted by the surrogate method 
within a tide cycle was not very significant but the unification of these 
predictions in just one level for 6 hours can largely simplify the imple-
mentation of the risk reduction measures by the authorities. The EI index 
used to classify those impact levels has been implemented for the first 
time in a risk analysis assessment. Thus, the thresholds considered to 
separate between levels of impact were established based on the au-
thors’ judgment and expertise for the study area. More comprehensive 
analyses that involve field observations might be required to evaluate 
the ability of this index to anticipate storm impacts in this and additional 
sites. From the numerical perspective, increasing the resolution of the 
erosion model might contribute to a more precise estimation of D and h, 
but cross-shore resolutions of 1–2 m are considered appropriate for this 
type of application. 

6. Conclusions 

The design, building, and implementation of a novel BN-based Early 
Warning System for coastal erosion in sandy beaches are presented. This 
system combines machine learning techniques, namely Bayesian Net-
works, and state-of-the-art numerical models, such as XBeach and 
SWAN, to predict storm erosion impacts in urbanized areas. This system 
was developed in two phases: development and operational. In the 
development phase, all information required to apply the machine 
learning method was generated, including the definition of hundreds of 
oceanic synthetic storms, modeling of the erosion caused by these 
storms, and characterization of the impact levels according to a newly 
defined erosion impact index. This adimensional index relates the hor-
izontal distance from the edge of the dune/beach scarp to buildings and 
the height of that scarp. Finally, a Bayesian Network that acted as a 
surrogate of the previously generated information was built. After the 
training of the network, conditional probability tables were created. 
These tables constituted the ground knowledge to make the predictions 
in the second phase. The development phase represented a further step 
in the work presented by Poelhekke et al. (2016), which was a proof of 
concept for the same study area, with an emphasis on operational 
systems. 

The methodology designed during the implementation phase was 
validated following two approaches. Firstly, by comparing results from 
the BN (surrogate method) against data obtained from running the 
models (non-surrogate method), here considered as the reference. This 
comparison considered the entire duration of three large storms whose 
return periods were 10, 16 and 25 years and it was observed that the 
surrogate method correctly predicted between 65% and 75% of the 
impacts. The remaining cases were mainly either overpredicted or 
underpredicted by one level, especially for the western and eastern 
sectors. Furthermore, the surrogate method was able to separate when a 
direct action with potential consequences was happening and when the 
hazardous conditions disappeared. Secondly by using the iterative k-fold 
cross-validation procedure where the BN was trained with nine folds and 
tested with one fold (only for the peak of the storm). This unbiased 
procedure was applied for three different BN configurations and it 
revealed that three input nodes for the oceanic BCs maximized the 
predictive BN skills (63%–72%). 

Simulating beach erosion for 72 hours by running SWAN + XBeach 
operationally would take more than 6 hours on a four-logical processor 
workstation (against the few minutes required to complete the opera-
tional phase) with a slightly better level of predictive skills than the 
surrogate method, as found on the hourly comparison assessment. 
Hence, this study demonstrated that the two-phase approach developed 
here can fastly provide high-accuracy predictions of erosion impacts. 
Praia de Faro was selected as the demonstration site but the 
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methodology designed here can be easily applied to other areas world-
wide with some modifications (e.g., the creation of synthetic storms) or 
adapted to incorporate other numerical models instead of SWAN and 
XBeach. Moreover, the modular architecture with two working phases is 
very flexible enabling the inclusion of additional features such as beach 
morphology characteristics, human occupation, social behavior, new 
oceanic conditions and longer prediction periods constituting a power-
ful tool for disaster management. 
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Lopera, A.F., Pedreros, R., Rohmer, J., Thibault, A., 2021. A user-oriented local 
coastal flooding early warning system using metamodelling techniques. J. Mar. Sci. 
Eng. 9 https://doi.org/10.3390/jmse9111191. 

IPCC, 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate 
Change Adaptation. In: Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., 
Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., 
Midgley, P.M. (Eds.), 2012.A Special Report of Working Groups I and II of the 
Intergovernmental Panel on Climate Change. Cambridge. ed., Cambridge, UK/New 
York. https://doi.org/10.1017/CBO9781139177245.009.  

Jäger, W.S., Christie, E.K., Hanea, A.M., den Heijer, C., Spencer, T., 2018. A Bayesian 
network approach for coastal risk analysis and decision making. Coast Eng 134, 
48–61. https://doi.org/10.1016/j.coastaleng.2017.05.004. 

Kim, T., Yang, T., Zhang, L., Hong, Y., 2022. Near real-time hurricane rainfall forecasting 
using convolutional neural network models with Integrated Multi-satellitE Retrievals 
for GPM (IMERG) product. Atmos. Res. 270, 106037. https://doi.org/10.1016/j. 
atmosres.2022.106037. 

Krishnamurti, T.N., Kumar, V., Simon, A., Bhardwaj, A., Ghosh, T., Ross, R., 2016. 
A review of multimodel superensemble forecasting for weather, seasonal climate, 
and hurricanes. Rev. Geophys. 54, 336–377. https://doi.org/10.1002/ 
2015RG000513. 

Kuglitsch, M., Albayrak, A., Aquino, R., Craddock, A., Edward-Gill, J., Kanwar, R., 
Koul, A., Ma, J., Marti, A., Menon, M., Pelivan, I., Toreti, A., Venguswamy, R., 
Ward, T., Xoplaki, E., Rea, A., Luterbacher, J., 2022. Artificial intelligence for 
disaster risk reduction: opportunities. Chall. Prospects 1–14. 

Lamsal, R., Vijay Kumar, T.V., 2020. Artificial Intelligence Based Early Warning System 
for Coastal Disasters, pp. 305–320. https://doi.org/10.1007/978-981-15-4294-7_21. 

Liu, C.M., Rim, D., Baraldi, R., LeVeque, R.J., 2021. Comparison of machine learning 
approaches for tsunami forecasting from sparse observations. Pure Appl. Geophys. 
178, 5129–5153. https://doi.org/10.1007/s00024-021-02841-9. 
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2016. Predicting coastal hazards for sandy coasts with a Bayesian network. Coast. 
Eng 118, 21–34. https://doi.org/10.1016/j.coastaleng.2016.08.011. 
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Sanuy, M., Jiménez, J.A., Plant, N., 2020. A Bayesian network methodology for coastal 
hazard assessments on a regional scale: the BN-CRAF. Coast. Eng 157, 1–10. https:// 
doi.org/10.1016/j.coastaleng.2019.103627. 

Sättele, M., Bründl, M., Straub, D., 2016. Quantifying the effectiveness of early warning 
systems for natural hazards. Nat. Hazards Earth Syst. Sci. 16, 149–166. https://doi. 
org/10.5194/nhess-16-149-2016. 

Seok, J.S., Suh, S.W., 2018. Efficient real-time erosion early warning system and artificial 
sand dune Breaching on Haeundae beach, Korea. J. Coast. Res. 85, 186–190. https:// 
doi.org/10.2112/SI85-038.1. 

Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C., 2015. Convolutional 
LSTM network: a machine learning approach for precipitation nowcasting. Adv. 
Neural Inf. Process. Syst 2015-Janua, 802–810. 

Smith, A., Houser, C., Lehner, J., George, E., Lunardi, B., 2020. Crowd-sourced 
identification of the beach-dune interface. Geomorphology 367, 107321. https:// 
doi.org/10.1016/j.geomorph.2020.107321. 

Sun, W., Bocchini, P., Davison, B.D., 2020. Applications of artificial intelligence for 
disaster management, Natural Hazards. Springer, Netherlands. https://doi. 
org/10.1007/s11069-020-04124-3.  

Terranova, O.G., Gariano, S.L., Iaquinta, P., Iovine, G.G.R., 2015. GASAKe: forecasting 
landslide activations by a genetic-algorithms-based hydrological model. Geosci. 
Model Dev. 8, 1955–1978. https://doi.org/10.5194/gmd-8-1955-2015. 

Valchev, N., Andreeva, N., Eftimova, P., Trifonova, E., 2014. Prototype of early warning 
system for coastal storm hazard (Bulgarian black sea \coast). Comptes Rendus 
L’Academie Bulg. des Sci. 67, 971–978. 

van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland, J., Pan, S., Sierra, J.P., 2003. 
The predictability of cross-shore bed evolution of sandy beaches at the time scale of 
storms and seasons using process-based profile models. Coast Eng 47, 295–327. 
https://doi.org/10.1016/S0378-3839(02)00120-5. 

van Verseveld, H.C.W., van Dongeren, A.R., Plant, N.G., Jäger, W.S., den Heijer, C., 
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