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ABSTRACT

Tapered members are an efficient solution for sieams, allowing an adjustment of the
cross-sections resistance to the applied loads. é¥ew while the critical cross-section of
uniform beams is always the one subjected to the umdavourable load combination, it is not
the case with tapered beams, since both actingesidtant values of the cross section internal
loads vary along the beam length. So, one of thia prablems in the design of these structural
members lies on the determination of the beantatitross-section where yielding occurs for
the first time.

This paper presents a method of calculation of wiadl expressions for the elastic
design of tapered beams subjected to bending aatfarce. These relationships allow the beam
critical section, its internal forces and the maximloads carried by the beam at its elastic limit
state, to be determined. Some examples are presensbow the possibilities of this proposal.

Key Words:. Steel structures, Elastic design, Tapered beamauad, Bending and Compression,
Tapered beam critical cross-section.

1. INTRODUCTION

Tapered structural members represent generallijpabla solution for steel beams, since
the adjustment of the cross-section resistandeetapplied loads is possible. The variations of
the beam cross-sections following those of theiagpbads allow the beam self-weight to be
optimised. So, that leads to a cheaper solutiorfiaaas the weight of steel required for its
fabrication is concerned.

The cross-section where the yield stress is reafdnete first time, in its most strained
fibres, is defined as the beam critical sectiore €lastic limit of the beam corresponds to the
elastic limit of its critical cross-section.

If the critical section of uniform beams is alw#ys one subjected to the most unfavourable
load combination, it is no longer the case witheted members, since both acting and resistant
values of the cross-section internal loads varggkhe beam length.
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Therefore, one of the major difficulties in the ig@sof non-uniform structural members
lies on the determination of the beam critical im&ctwhich controls the elastic resistance of the
entire element.

This paper presents a method of deduction of dnalyxpressions for the elastic design
of tapered beams submitted to bending and axieéf@nd not subjected to any kind of buckling.

These expressions allow the beam critical seciisimternal forces and the maximum
loads, carried by the beam at its elastic limitestto be found. So, it is possible to compare the
reduction of the tapered beam self-weight, whenpamed to a uniform beam with the same
elastic limit state.

The expressions are written as a function of nonmedisional parameters, which allow the
influence of the relative variations in the bearargetry or loading parameters over the tapered
beam resistance to be analysed [1, 2].

In order to help the understanding of this metle@mples of application are presented
for a simple case of a tapered cantilever beam avitbctangular cross-section, subjected to
concentrated axial and transversal loads at iesdrel.

The application of the method to other cases oériegh beams, with different cross-
sections or other types of loading is made the saayeafter defining the respective distributions
of acting and resisting internal forces. The disttions of these resisting internal forces are also
presented for the particular case of a tapered bgtmni cross-sections, but the application of the
method to this types of beams is not presentede sirexceeds the limits of this paper.

2. DISTRIBUTION OF THE RESISTING CROSS-SECTION INTERNAL FORCES

2.1 Beamswith rectangular cross-sections

The following relationships apply to beams withtaagular cross-sections with a constant
width b and a linearly varying heiglhi(x), between two extreme valuegminimum) andH
(maximum) located at the ends of the beam (figThg beam length is designatedLby

h H/h

Fig. 1 — Dimensional variables Fig. 2 — Reducedabdes

The analytical expressions resulting from the agpion of the method are written in
function of reduced (non-dimensional) variablesqd@¢h as, for instance:

A=x/L (1) a, =1-h/H )

Therefore, the height of a cross-section with aiced co-ordinatd is given by eq. (3)
and the area and the second moment of inertiasttbss-section are given by eq. (4) and (5):
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The resisting axial forcH, (A1) and bending momeiy(A) of this section correspond to
the maximum internal forces that the cross-secdti@ble to support in the elastic domain. They
are defined by eq. (6) and (7), wheyeepresents the elastic limit strain of the materia
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The resisting internal forcég (A1) andMy(A) may be written in a non-dimensional form,
according to eq. (8) and (9):
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2.2 Beamswith I-shaped cross-sections

The following expressions apply to beams with |-g@thpross-sections with constant
width b, and with a height(x) varying linearly between two extreme valbgsinimum) andH
(maximum) located at the beam ends (fig. 3). Thegkaand web thicknesg,andt,, are
expected to be constant along the length of thenblea

Fig. 3 — Tapered I-shaped beam

The shape of the smallest cross-section is chassxddy the reduced parametegsandar.:

2t
a, = 1—%“ (10) a, = 1—Tf (11)

Since the height of the cross-section varies athadbeam length, the, parameter of a
cross-section with a reduced co-ordinate equal to [2]:
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In the particular case of the largest cross-section
2t,
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The area\(A) and the second moment of inei{jd) are given by eq. (14) and (15), [2, 3],
and the resisting axial ford&(A) and bending momeiMy(A) are defined by eq. (16) and (17):
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The variabledNy(4) andM,(A) may also be written according to the reduced $o(h8)
and (19):
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3. DISTRIBUTION OF THE ACTING CROSS-SECTION INTERNAL FORCES

As mentioned before, the application of this metisqatesented in the particular case of a
tapered cantilever with a rectangular cross-seciginjected to concentrated axial and transversal
loads at its free end (fig 4).
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Fig. 4 — Dimensional variables Fig. 5 — Reducedades

The distribution of the acting axial force and beganoments may be written in the following
non-dimensional forms:
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4. CRITICAL SECTION OF THE TAPERED BEAM-COLUMN

The critical section of the member is defined asctioss-section where the elastic limit
state of the material is reached for the first tifft@s critical section may be found by searching
the co-ordinatel of the cross-section where the maximum stresfiesabe yield strength of the
material,a. This condition may be written in the followingiteeed form:

CmalA) =1 (22)

where the variable,“max(/}) = amax(/] )/ay represents the reduced value of the maximum stress
O'max(/]) [1]. The value ofcmax(/]) may be determined by the addition of the absolatees of

the reduced axial foragA) and bending moment(A), since the cross-sections are symmetrical
about their strong axis of inertia [1, 3].

In the particular case of uniform cantilever beéme,critical section is always located at
the beam fixed endi(= 0), where the bending moment reaches its maximuine via the case of
a tapered beam, the resisting bending morig{l) changes along the beam length and the
critical section may correspond to another crostia® different fromA = 0.

A more detailed explanation for finding the beantical section may be found in
reference [2].

5. CASE STUDY: TAPERED BEAM SUBMITTED TO CONCENTRATED LOADS

5.1 Brief description of the load combinations

In this paper, three different scenarios are stidiesociated to a tapered beam-column
with rectangular cross-sections submitted to thdilog case described previously (fig. 3 and 4).
In the first case, the axial foréeremains constant as the transversal feriseincreased
up to the elastic limit state of the tapered beatoran, cmax(/]) =1. Inthe second case, the ratio
between the values BfandP is kept constant and their values are increaséal q,glx(/]) =1.In

the third case, the transversal forRcis chosen constant and the axial fdfdacreases up to the
elastic limit statecmax(A) =1.

5.2 Constant axial force and increasing transversal force

The following expressions apply to tapered beamrookiwith rectangular cross-sections
submitted to a constant axial force and an incnggsansversal force. As mentioned before, the
elastic limit state of a cross-sectidis reached when the condition (22) is satisfidxis €ondition
may be written in the following form [1]:

ha) , 0-A)o-o)
(1-a, A) (1-a,A)

=1 (23)

Therefore, the reduced valpgof the transversal force at the elastic limit estat the
cross-sectionl is equal to:

py(/]): (1_0'\//1)2 (1_f((]'_—a\/)j (24)

1-2)@-a,)f 1-a, A)




The critical sectiom, of the beam—column is the one where the elastit Btate is
reached for the first time. So, the valugg#) given by eq. (24) is minimum whelh= A, and
the combination of andp,(4,) corresponds to the elastic limit state of thetag beam.

The minimum value gby,(A) may be obtained by the condition:

ap, (1) 1 [(1—av Ai+a, A-2a,) f]

=0
- i-a,)

Y] -2y =0 (9)

The solutions of this equation are:

Ay =1+@J1— f (26) A, 1074 g @7)

a

The first solution does not lead #y values within the limits of the beam length
(0=< Ay< 1). The second solution leads tdyavalue satisfying the condition04,< 1 when:
1-f
a,z2————
1+,1-f
If eq. (2) is introduced inserted in eq. (28),9tgossible to conclude that the critical
section is located at the fixed end of the tapegetdilever beamA = 0) if the ratioH/h between

the height of the largest and smallest cross-sectgsmaller than the limit indicated in eq. (29).
Otherwise, the critical section is given by eq.)(27

H/h<l+/1-f = A, =0
H/h>1+J1-f = AV:l_@ 1-f

\

(28)
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The graphical representation of the position ofdtigcal sectiondy, depending on the
reduced valué of the axial force and on the ratio between thghtef the largest and smallest
cross-sectionsd /h=1/(1-a,), is represented on fig. 5.

In the elastic domain, the maximum value of thedvarsal loadp,(Ay), is obtained by
replacing the value of in eq. (24) by the value df, given by eq. (29).

The value opy(A,) represents the increase of the maximum transveeshvalue that can
be obtained with a tapered beam, when comparedricaam beam with a constant cross-section
equal to the smallest tapered beam cross-section.

However, the evaluation of this value must take adcount the steel quantity required to
produce the tapered shape of the beam. The voldithe @bove mentioned uniform beam is
notedVolni, as the one of the tapered bearWad,,. This last is given by eq. (30) [2]:

bh+bH bhL 1 2-a
Vol = L= L= 1+ = Vol . 30
tap A\ned 2 2 ( 1_0\/} 2 (1_0,\/) min ( )

Therefore, the increase of resistance of the tdpleeam per volume unip*, may be
obtained by means of the following expression:
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5.3 Axial force and transversal forceincreasing proportionally

The following expressions apply to tapered beararook with rectangular cross-sections
submitted to increasing concentrated axial andstrarsal loads. The ratiw, = f/p, between

the reduced values of these loads, remains congpartt the beam-column elastic limit. This
loading state is equivalent to a single concerdrbdad, inclined to the axial load of the beam-
column, with two componentsandp.

The elastic limit state of a cross-sectibris still defined by eq. (23). In this case, the
reduced valugy of the transversal force at the elastic limitestait the cross-sectiohis:
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The minimum value of,(41) may be obtained by the condition:

_ _ _ _ _ _ 2
apy(A):O - _(1 avA)((l avA)(l av)2+af av(l AZ) 2(1 av) ):0 (33)
0/ (i-a,)2-2fla, +1-a,)
The solutions of this equation are:
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The first solution does not lead #y values within the limits of the beam length
(0= Ay<1). The second solution leads td,avalue satisfying the condition<0A,< 1 when:
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Therefore, the critical section is at the fixed ¢hgd= 0) or at the free end= 1) of the
tapered cantilever beam if the ratipis smaller or greater than the limits indicate@adn (36);
otherwise, the critical section is given by eq.)(35
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The graphical representation of the position ofttitecal section of the tapered beam-
column, depending on the inclination of the conrt force (defined by;) and on the ratio
between the height of the largest and smallessesestionsH /h :]/(1— av), is shown on fig. 6.

In the beam-column elastic domain, the maximumevalithe transversal loggl(4,), is
obtained by replacing the valuebin eq. (32) byl given by eq. (37). The increase of resistance
of the tapered beam per volume upit, may be obtained by means of the following retetiop,
whereVol,, represents the volume of the tapered beam, giyen b(30) [2]:
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Fig. 5 — Location of the critical section Fig. 6 — Location of the critical section in the
in the case of constant axial load case of proportional axial and transversal loads

5.4 Constant transversal force and increasing axial force

The following expressions apply to tapered beamrook with rectangular cross-sections
submitted to a constant transversal force and@aeasing axial forc& he elastic limit state of a
cross-sectiod is still defined by eq. (23). In this case, theueed valud, of the axial force at the
elastic limit state of the cross-sectidims equal to:
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The minimum value of(A) may be obtained by the condition:
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whose solutions are:
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The first one does not lead Apvalues within the limits of the beam lengthg(@, < 1).
The second solution leads tdyavalue satisfying the conditioly > 0 when eq. (43) is verified,
and satisfying the conditiofy < 1 when eq. (44) is verified:

p< (l_cvr ; (43) p2—* (44)



Therefore, if eq. (2) is included in (43) and (4#)s possible to conclude that:

(-3 -
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H
pS[F_ j = Ayzl

In the elastic domain of the beam-column, the maxmvalue of the transversal load,
fy(Ay), is obtained by replacing the valuedoh eq. (39) byl, given by eq. (45).

The resistance increase of the tapered beam pemeolinit,f*, may be obtained by
means of the following expression, wh¥l@,, represents the volume of the tapered beam, given
by eq. (30) [2]:

* — f)’(/‘y}vo'min — 2(1_av)
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6. EXAMPLES OF APPLICATION

In order to show the application of these analytegressions, four examples are
presented according to the previous case study.

6.1 The first one concerns a tapered cantilever bedmygowhose length is = 2000 mm.
The cross-sections are rectangular, with a constatth b = 20 mm and a height presenting a
linear variation from the free end, whérel80 mm, to the fixed end, wherke= 360 mm. The
yield strength of the material & = 240 MPa.

In this caseH/h = 2 and, according to eq. (2), = 0,5. The properties of the smallest
Cross-section ammin= 3600 mm, Imin= 972 cnd, Ny min= 864 kN andVly min= 25,92 kN.m.

The cross-sections are submitted to a consta@ soad F = 432 kN. What is the
maximum transversal concentrated load that camppkead at the member free-end, before the
critical section starts yielding?

The reduced value of the axial load 0,5 (20) and, according to eq. (29), the critical
section is located &, =1-+/05=0,2929. So, the maximum reduced value of the transversal

load (24) ispy = 2,9142 and the dimensional value of this fasd@= 37,768 kN (21).

Eq. (29) shows also that the critical section wooé located at the fixed end of the
tapered memberdi{=0) if H < (1+ \/ﬁ)h or if H <307mm. So, if the height of the largest
cross-section ibl = 300 mm H/h = 5/3 anda, = 0,4), for instance, theky = 0 (29),p,= 1,9444
(24) and the maximum transversal concentrated ab#de free end iB = 25,200 kN (21).

6.2  The second example concerns the same tapargigwer beam-columrnH = 360 mm)
submitted to a constant transversal concentratetHe= 25,92 kKN. What maximum axial load
can be applied at the member free-end, beforeiiisat section starts yielding?

The reduced value of the transversal loag 2 (21) and according to eq. (45) the

location of the critical section isy = (1— 05 \/5) =058579. So, the maximum reduced value of
the axial load (39) if§ = 0,82843 and the dimensional value of this fosée+ 715,761 kN (20).



6.3  The third example concerns the same taperditbe@n beam-column (withl = 360 mm)
submitted to an inclined concentrated load withhsacdirection that the ratio between the
reduced values of the axial and transversal comysisr, = f /p = /8. What is the maximum

value of this load, before its critical sectionr&gaielding?
According to eq. (3714, = (1— 2x 0,52/(1— 05+ 0,5/8))/0,5 =0,22222. So the maximum

reduced value of the transversal load (39) & 3,16049 andl, = p,/8 = 0,39506. Therefore, the
dimensional values of these componentsar8 41,333 kN (20) an& = 40,960 kN (21), and
the maximum value of the inclined load is 343,782 k

6.4  Finally, the fourth example concerns a tapegetilever beam-column with the same
smallest cross-section, submitted to an inclinetteatrated load with the same direction as in
the previous exampley, = f /p =1/8. What is the minimum value of the height of theyést

sectionH, so that the critical section of the member stéotgield when the transversal
component of the inclined loadis= 51,84 kN?

According to eq. (21py = 4 andy = p,/8 = 0,5; the value of the ratm may be obtained
using eq. (37) and (32), by means of a trial pracedAfter a few (4 to 5) iterations, the value
found for A, is 0,48484 (37) and, = 0,57852 (32); therefored =h/(1-a,) = 4271 mm.

7. CONCLUSIONS

This paper presents a method of deduction of analgxpressions for the elastic design
of tapered beam-columns. A case study shows theappn of this method to tapered beam-
columns with rectangular cross-sections subjeacembhcentrated axial and transversal loads.
Three loading cases are studied. In the first time,axial force remains constant while the
transversal force increases up to the elastic 8taie of the member. In the second case, the ratio
between the values of the two loads is kept cohsthite their resultant grows. In the third case,
the transversal force remains constant while thal &éorce is increased.

The proposed relationships allow the way how threua parameters defining a tapered
member act together to be understood. It is alseipte, for instance, to define the best geometry
of the member to resist a certain loading combomatr to determine the load intensities leading
a beam-column with a given geometry to its eldsthd state. Some examples are presented to
emphasise these possibilities.

This method may also be used for other loadings;asd¢or members with other kinds of
cross-sections (as I- or H-cross-sections, foaimst) or different boundary conditions. It just
needs to be adapted to the new distributions @igaend resisting cross-section internal forces.
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