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Abstract: In recent decades, interest in the eco-efficiency of building materials has led to numerous
research projects focused on the replacement of raw materials with mineral and biomass wastes, and
on the production of mortars with low-energy-consuming binders, such as gypsum. In this context,
five different fractions (bark, wood, branchlets, leaves, and flowers) of Acacia dealbata—an invasive
species—were evaluated as fillers for premixed gypsum mortars, at 5% and 10% (vol.) addition levels
and fixed water content. Although these biomass fractions had different bulk densities (>50% of
variation), all the mortars were workable, although presenting different consistencies. As expected,
dry density decreased with biomass addition, but, while mortars with addition at 5% presented a
slight shrinkage, a slight expansion occurred with those with 10% addition. Generally, the mechanical
properties decreased with the biomass additions even if this was not always proportional to the
added content. The wood fraction showed the most positive mechanical results but flexural and
compressive strengths of all the tested mortars were found to be higher than the lower standard limit,
justifying further studies.

Keywords: bio-based mortars; invasive species; biomass additions; bio-composites; by-products;
agro-industrial wastes; density; dimensional variation; mechanical properties; pore structure

1. Introduction

In recent years many findings have been made on the effects of indoor relative humid-
ity and temperature on human health [1–3]. It is common knowledge that an intermediate
range of relative humidity (RH) can prevent airway and ocular irritations in various dis-
eases [4,5] and is often related to thermal comfort in free-running buildings [6] when
adaptive models are considered [7].

Plastering mortars usually cover large indoor surfaces and, thus, can contribute to
passively equilibrating indoor relative humidity improving occupants’ comfort and, in
some cases, health. To provide that contribution, they have to be highly hygroscopic,
adsorbing and desorbing moisture from and to the indoor air.

Gypsum plasters are broadly used to coat (plaster) indoor walls and ceilings as they
appear to be an appropriate option not only in new construction but also in many restora-
tion interventions [8]. Moreover, hemihydrate gypsum binder is produced at around
120–180 ◦C, having a much lower firing temperature and milling energy for production
than other binders, i.e., cement (around 1500 ◦C) or air lime (around 900 ◦C). Thus, the
associated low embodied energy makes gypsum plasters a sustainable solution. However,
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among common plastering mortars, gypsum-based mortars present very low hygroscopic-
ity [9–11]. Although not studied in the present work, it is probable that the moisture buffer
capacity of gypsum plasters may be improved with the addition of hygroscopic materials.

Nonetheless, the eco-efficiency of building products can be increased by addition of
wastes and the replacement of raw materials [12,13]. Among these wastes, agro-industrial
wastes can be used in the production of eco-products for construction [14] with the purpose
of enhancing relevant physical and chemical properties, such as bulk density, thermal
conductivity, and the hygric and hygroscopic behavior of those products, while creating
useful applications for various biomass wastes [15–19]. Actually, as biomass is usually hy-
groscopic, it is expected that they may improve gypsum plasters hygroscopicity. However,
in comparison to cement-based mortars [20–22], studies on the effects of the incorporation
of agro-industrial wastes in gypsum-based mortars are rare.

Acacia species mostly originated in Australia but have spread all over the world
and have become invasive due to their high capacity for growth, seed production, and
seed germination, which can be active for several years. Their selective removal is not
economically viable if added-value applications are not found for the collected biomass.
The use of biomass collected in forest environments contributes to reducing the danger
of forest fires [23,24] and, in the case of invasive species, may constitute a method of
propagation control since it disrupts the reproductive cycle, namely by preventing seed
formation [25].

Use of Acacia wastes in plaster formulations was not found in literature although
applications of Acacia biomass in composite materials have been described by some au-
thors [26,27]. Also, some fractions of the plant have already been used in other sectors,
namely bark as a source of tannins for the leather industry [28] or flowers used to produce
absolute oils for the perfume industry [29]. Other fractions of Acacia biomass have tra-
ditionally been used as a source of bioactive components for folk medicines [30]. After
recovery of these functional extractives, the biomass still retains most of its lignocellulosic
components, keeping its potential to be used in energy production or material applications.

The aim of the present study was to assess if the addition of different fractions and
contents of Acacia dealbata biomass to gypsum plastering mortars jeopardizes the common
fresh-state properties of the mortars or their mechanical properties in order to discard
formulations which do not meet the requirements for further studies related to hygroscop-
icity. Hence, five different fractions of the same plant (Acacia dealbata) were selected and
added to a gypsum premixed mortar (5% and 10% vol.) after the recovery of extractives for
other applications. Although the premixed product is based on a low embodied energy
binder, such as hemihydrate gypsum, the addition of biomass reduces the consumption
of raw materials needed to produce it, reducing the environmental impact of the plasters.
Nevertheless, it is important to confirm if the addition require a higher consumption of
water to present adequate workability and comply with the mechanical requirements for
gypsum-based plastering mortars.

2. Materials and Methods
2.1. Materials

A premixed industrial powder product (GP), Sival Reabilita, produced by the company
Sival, in Portugal was selected for the study. This product based on gypsum, mineral fillers,
and admixtures and is ready to mix with water for manual application in interior walls
and ceilings. It complies with EN 13279-1 [31], type B1/20/2 and can be used to plaster old
indoor old walls as well as new ones.

Five different Acacia dealbata fractions were selected to be incorporated in the mortar
formulations: flowers (Fl), leaves (Le), branchlets (Br), wood (Wo), and bark (Ba). The
biomasses were collected in the regions of Alcobaça and Caparica (Central Portugal), from
at least ten different trees at each location. The fractions were milled, sieved to 2 mm, and
macerated in acetone, at 25 ◦C, to recover extractives that could be valorized in various
applications, such as nutraceutical products. The extracted biomasses were air-dried at
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25 ◦C for 48 h, and characterized for loose bulk density and color coordinates according
to the CIELab color system before use in the mortar preparations. Instrumental color was
determined using a colorimeter (CHROMA METER CR-410, Tokyo, Japan), calibrated
using a standard white reflector plate. The visual observation of the A. dealbata fractions at
the time of the mortar production is presented in Figure 1, and Table 1 presents their loose
bulk density and color parameters.
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Figure 1. Acacia dealbata fractions: (a) wood, (b) branchlets, (c) leaves, (d) flowers, and (e) bark.

Table 1. Loose bulk density and color coordinates of Acacia dealbata fractions.

A. dealbata Fraction Loose Bulk Density (g/cm3) Color (CIELB Coordinates)
L* a* b*

Wood 0.211 65.58 0.68 18.94
Branchlets 0.378 59.11 1.31 17.51

Leaves 0.415 34.97 0.59 11.04
Flowers 0.217 35.33 8.50 11.39

Bark 0.435 43.19 7.58 12.85

A decrease in the luminosity parameter L* observed for leaves and flowers indicates
darker colors. Although fresh Acacia flowers had a light yellow color, the process of solvent
extraction and drying, promotes oxidation reactions that result in a brownish darker color.
Low values of a* indicate an increase of the green component, an effect that was more
evident for leaves and wood. The yellow component was higher for the biomass fraction
with higher b* values, namely wood and branchlets. These different colors of the biomasses
can influence the color of the mortars and are important if the plasters have no finishing
layer. The loose bulk density of the factions varied up to 51% from the denser bark fraction
to the lighter wood one.

2.2. Mix Design

The selected fractions of A. dealbata were added to the GP, at 0% (reference mortar),
5%, and 10% by volume, and manually homogenized. Additions of constant volumes of all
the different fractions were made so that the physical changes were comparable. The mass
for exact incorporation of each fraction (Table 2) was calculated according to the loose bulk
density of each biomass (Table 1).

The powder mix was added to water for 1 min using the sprinkling method, left to
soak for another minute, and then mechanically mixed for 1 min (Figure 2). A volumetric
ratio of 1:3 (water:GP) corresponding to a ratio by mass of 0.45, was kept for all the mortars
(Table 2).

2.3. Specimens and Methods

In Figure 3 a flowchart is presented to resume the experimental steps.
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Table 2. Composition of the mortars and flow table consistence.

Mortar Acacia Fraction Addition (vol, %) Addition (Mass, g) Flow (mm)

REF – – – 163.0
Fl5 Flowers 5 32.6 163.0
Le5 Leaves 5 62.2 168.5
Br5 Branchlets 5 56.7 171.3
Wo5 Wood 5 31.7 160.3
Ba5 Bark 5 65.2 175.5
Fl10 Flowers 10 65.3 165.5
Le10 Leaves 10 124.4 156.5
Br10 Branchlets 10 113.5 171.0
Wo10 Wood 10 63.3 165.3
Ba10 Bark 10 130.4 165.0
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The fresh mortars were tested for consistency using the flow-table method, determined
based on EN 13279-2 [32] at a fixed amount of water. The fresh-state density was determined
based on EN 1015-6 [33]. For the hardened mortars, a minimum of five standardized
prismatic specimens (160 mm × 40 mm × 40 mm) were produced for each formulation and
the following properties were determined:

• Volumetric shrinkage—determined using a digital caliper.



Buildings 2022, 12, 339 5 of 12

• Apparent bulk density—based on EN 1015-10 [34]—geometrically determined using a
digital caliper and a balance with 0.001 g resolution.

• Flexural and compressive strengths—based on EN 1015-11 [35]—using an electrome-
chanical testing device from Microtest, model EM1/100/FR. The loading rates were
adjusted so that failure occurred within a period of 10–25 s for flexural strength and
30–90 s for compressive strength. Load cells of 2 kN and 200 kN were used, depending
on the mechanical strength of the material (Figure 4).

• Dynamic modulus of elasticity—based on EN 14146 [36]—by resonance frequency
using a Zeus ZRM equipment.

• Optical microscope observation—using an Olympus SZH-10 optical microscope.
• Open porosity—based on EN 1936 [37]—by vacuum and hydrostatic weighing.
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3. Results and Discussion
3.1. Flow-Table Consistency, Density, and Drying Shrinkage

The consistency of the mortars (Figure 5) was determined using the flow-table method
and the results obtained are presented in Table 2. All the mortars showed adequate
spreading values, coherent with a good workability. Except for wood, the addition of 5%
of biomasses slightly improved the flow of the mortars. The same happened for the 10%
addition, except for the leaves. Therefore, the influence of the biomasses was in general
very positive, as the additions did not required additional water to maintain workability.
Moreover, it was expected that, for a fixed amount of water, an increase in the volume of
powders would have led to lower values of flow-table consistency. This was not observed
in the case of flowers and wood which, on the contrary, showed a flow increase. This may
have been related to the combined effects of different particle size distribution, particle
shapes, and hygroscopicity of the different biomass fractions. Hygroscopicity of a biomass
is typically higher than that of biochars and affects the water available for hydration of
other mortar components [38]. Unlike biochar particles or sand particles, biomass particles
have irregular shapes that influence the mechanical interactions between themselves and
other mortar components, thus affecting the flow behavior of the wet mortars [39]. These
observations suggest that further tests using biomass particles of different granulometries
may help to elucidate these effects.
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Figure 5. Flow-table consistency at the removal of the cone of the reference mortar (a) and after
jolting the flow table fifteen times (b).

Figure 6 shows the values of the bulk density of the mortars from the fresh state to
the 28th curing day. It can be easily observed that during the first 14 days, the density
decreased for all the formulations, and that the drying essentially occurred during that
period. The addition of biomasses, in both volumetric percentages (5% and 10%), did not
significantly modify the bulk density of the mortars which was around 1.6 kg/dm3 in the
fresh state and 1.2 kg/dm3 from the 14th curing day onwards. Only for the plastering
mortars with addition of bark did the first 7 days of curing show a higher decrease in bulk
density, possibly caused by a faster evaporation of water. The bark particles had some
differences in their contents of cellulose, hemicellulose, and lignin, relative to the other
biomass fractions [40], which determines the surface groups of these particles and may
have influenced their interactions with water molecules. Generally, the volume reduction
was lower for the mortars with 5% biomass addition relative to the reference mortar, while
all the formulations with 10% (vol.) biomass addition showed a slight volume increase
up to one month of age. No cracks were observed in either the reference or the modified
mortar samples. Therefore, the addition of biomass had a positive effect in the prevention
of significant volume variation that could cause plaster cracking or lack of adherence
to the support.
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3.2. Flexural and Compressive Strength

Flexural and compressive strength tests were performed after 30 days. All the mortars
with added of bio-based wastes presented lower flexural and compressive strengths than
the reference mortar. This was much less significant for those with addition of the wood
fraction, especially at 5%. Indeed, a general decrease was noticed, namely between 40
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and 55%. Moreover, a higher content of the same biomass usually corresponded with a
lower flexural strength of the mortar, except for leaves and branchlets where the content
presented insignificant differences. Although the latter showed a similar flexural strength
at 5% and 10% of biomass addition, the compressive strength increased with an increase in
biomass. In addition, bark showed this tendency to a small degree, whereas particles of
flowers and wood reduced the compressive strength with increased contents. As mentioned
previously, the different fractions of A. dealbata biomass have different amounts of cellulose,
hemicellulose, and lignin. This affects their surface and their tenacity during milling,
resulting in different particle shapes and different particle size distributions [40]. These
different characteristics will also affect chemical and physical interactions with other
mortar components, thus influencing mechanical properties. This tendency for a decrease
in mechanical properties with the addition of biomass was already observed by other
authors [41,42]. Morales-Conde [43] found that not exceeding 5% of sawdust incorporation
on gypsum mortars led to an improvement of flexural strength, whereas all the percentages
of sawdust additions decreased the compressive strength. The same authors related this
phenomenon to a discontinuity introduced by the particles in the gypsum matrix which
might have caused a reduction of strength. A lower hydration rate in the composites
was also referenced by Chiki et al. [44], Panesar et al. [45] (2012), and Fatma et al. [42].
Nevertheless, all the mortars fulfilled the flexural and compressive strengths requirements
of the EN 13279-1 [31] for gypsum plasters, as presented in Figure 7.

3.3. Dynamic Modulus of Elasticity (DME)

The dynamic modulus of elasticity (DME) generally showed a similar tendency to the
flexural and compressive strengths. The incorporation of 5% and 10% (vol.) of different
A. dealbata fractions introduced a decrease in the DME of the mortars (Figure 8). Moreover,
the higher the volume of biomass added, the lower the modulus, as expected. These results
can indicate a higher deformability of the mortars, which can lead to a lower susceptibility
to cracking phenomena. Nevertheless, the particles of biomass could be responsible for the
DME decrease by triggering new voids in the mortar matrix, as evidenced by the Olympus
SZH-10 optical microscope observation (Figure 9). A poor interface between the gypsum
matrix and the sawdust particles, and a high water absorption of the sawdust were found
to be responsible for the poorer mechanical behavior of the gypsum–sawdust composites
studied by Dai et al. [46]. Some differences on the hydrophilic nature of the fractions of
A. dealbata may have led to a high absorption of the mixing water and a consequent increase
of volume of the biomass particles during the mixing process. Thus, less water available
during the gypsum hydration process could have led to a lower hydration rate (with
lower mechanical properties) of the modified mortars when compared to the reference
one. Moreover, once dried, the particles of biomass could have lost their gained volume
creating the big voids that were found (Figure 9). The biomass particles could also have
physically replaced a corresponding volume of the gypsum paste, therefore, decreasing the
mechanical properties of the mortar.

The color of the dry mortars was also assessed by naked eye and optical microscope
observation. It could be seen that the differences in color due to the addition of the different
biomasses and contents was not relevant when compared with the reference mortar.

3.4. Open Porosity

The values of open porosity of the eleven mortars were quite similar, although a small
amount of variation was observed (Figure 10). All the mortars were highly porous, with
values around 40%. The addition of flowers, leaves, and branchlets increased the porosity
(the higher the percentage, the higher the effect). The addition of wood and bark, instead,
kept the open porosity below the value of the reference mortar. The results agreed with
the observed values of DME and flexural and compressive strengths, whereby the mortars
with incorporation of A. dealbata wood particles showed the lowest open porosity and one
of the highest mechanical properties.
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4. Conclusions

After the removal of extracts that can be used in value-added chemical products, the
wastes of five different fractions of A. dealbata, an invasive species in many countries, were
added to a premixed gypsum plastering mortar in 5% and 10% volumes.

The study showed that the addition of A. dealbata biomasses did not significantly affect
the workability of the mortars and their water requirements—seven mortars out of ten
showed a higher flow-table consistency than the reference mortar despite a fixed amount
of water being used for all. In addition, the bulk density, open porosity, and color were not
appreciably modified by the additions, but a general decrease in mechanical properties
was observed. However, mortars with all the studied fractions and contents presented
flexural and compressive values that complied with the requirements of EN 13279-1 [31]
for gypsum plasters. Acacia dealbata wood showed the closest mechanical properties to the
reference mortar, having the best potential to be used as an addition to gypsum mortars,
at least up to 10% volume incorporation rate, without causing relevant changes in their
workability, density, or flexural or compressive strengths. Thus, this study allows us to
conclude that the gypsum-based products with the inclusion of the studied additives are
viable as plasters, according to EN 13279-1 [31].

Further studies will assess whether the addition of these biomasses, beyond their
advantages in the reduction of incorporated energy, can improve the hygroscopicity of
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gypsum plasters and, therefore, their passive contribution to comfort and health in indoor
environments. Moreover, the biomass fractions which had more negative effects on the
mechanical properties of the studied plasters, might still present a high relative humidity
passive regulation performance and therefore be promising for this reason.
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