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Calibration of partial safety factors using FORM

Calibração de coeficientes parciais recorrendo ao método FORM

Luciano Jacinto
Luís Oliveira Santos
Luís Canhoto Neves

Resumo
Os coeficientes parciais de segurança especificados nos regulamentos 
estão calibrados para o dimensionamento de populações de estruturas 
relativamente vastas. Consequentemente, tais coeficientes nem sempre 
refletem corretamente os níveis de incerteza envolvidos em estruturas 
específicas existentes. A possibilidade de ajustá-los tem, por isso, grande 
interesse na avaliação de estruturas existentes. O conceito de ponto 
de dimensionamento FORM oferece um método simples para calibrar 
coeficientes parciais de segurança relativos a variáveis individuais. Este 
artigo discute o método geral e desenvolve um conjunto de expressões 
analíticas para os modelos probabilísticos mais comuns em fiabilidade 
estrutural.
Como veremos, o coeficiente parcial de segurança de uma variável 
específica pode ser ajustado uma vez definidos: (1) modelo probabilístico 
usado para descrever a incerteza nessa variável; (2) coeficiente de 
variação da variável; (3) quantil implícito no valor característico utilizado 
para quantificar o valor de dimensionamento; (4) importância da variável 
no estado limite em consideração (medida pelo respetivo coeficiente de 
sensibilidade) e (5) índice de fiabilidade alvo.
A escolha do modelo probabilístico influencia significativamente os 
coeficientes parciais e essa influência é tanto mais significativa quanto 
maior for o coeficiente de variação da variável. Consequentemente, mais 
atenção deve ser dada ao escolher um modelo probabilístico para uma 
variável com alto coeficiente de variação.

Abstract
Partial safety factors present in codes are defined for the design of 
broad populations of structures. As a consequence, they do not always 
reflect correctly the uncertainties for specific existing structures. The 
possibility of adjusting them has therefore great interest when assessing 
an existing structure. The concept of design point connected to FORM 
offers a simple method to calibrate partial safety factors for individual 
variables. This paper discusses the overall methodology and develops a 
set of analytical expressions for the probabilistic models more common 
in structural reliability.
As it will be seen the partial factor for a particular variable can be adjusted 
once defined: (1) probabilistic model used to describe the uncertainty 
in that variable; (2) coefficient of variation of the variable; (3) fractile 
implicit on the characteristic value used to quantify the design value; 
(4) importance of the variable in the limit state under consideration 
(measured by the respective sensitivity factor), and (5) target reliability 
index.
The choice of the probabilistic model influences significantly the partial 
factors and this influence rises as the coefficient of variation increases. 
As a consequence, more attention must be paid when choosing a 
probabilistic model for a variable with high coefficient of variation.
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1	 Introduction
Calibration of partial safety factors is of interest not only to code 
writers but also to designers of structures and mainly those involved 
in the assessment of existing structures. In fact, the partial factors 
specified in codes for new structures are applied to vast populations 
of structures and might not reflect correctly the level of uncertainty 
for a particular existing structure [1]. If relevant statistical information 
regarding a given basic variable is available during the assessment of 
an existing structure, the possibility of adjusting the partial factor 
of that particular variable is of great interest, for that information 
can lead to a decrease of uncertainty and a possible reduction in the 
partial factor.

The possibility of adjusting the partial factors when assessing an 
existing structure can be regarded as an intermediate level between 
the method of partial factors, with fixed values as specified in codes 
for new structures, and a full probabilistic analysis, which requires 
probabilistic information for all basic variables involved and is more 
demanding from the practical point of view.

According to EN 1990 [2], the partial safety factors specified in 
Eurocodes were calibrated mainly based on a long experience of 
building tradition (clause C3 (2)). The same clause mentions that 
partial factors might also be calibrated using probabilistic tools. A 
general method to calibrate partial factors through probabilistic 
tools is described in [3] and in ISO 2394 [4]. This method, however, 
is of interest mainly to code writers since its use is not simple for 
practical applications. A simpler approach, based on First Order 
Reliability Method (FORM), has gained the attention of several 
researchers due to its simplicity and has strong application in the 
assessment of existing structures domain [5].

A recent recommendation published by fib [6] constitutes an 
important step to bring this approach to the practising engineers. 
The present paper gives a contribution on this subject, by 
discussing the overall methodology and by developing formulas 
for probabilistic models common in structural reliability but not 
covered by the above fib recommendation, namely Fréchet and 
Weibull distributions.

2	 Calibration of partial factors using FORM 
– General formulation

Consider a limit state function M = g(X1, ..., Xn), whose safety margin 
M depends on n basic variables, Xi. The function g is defined so that 
M < 0 represents failed states, M = 0 limit states and M > 0 unfailed 
states [4]. According to the partial factor format, the safety to that 
limit state is considered acceptable if:

( )d , , ndg X X ≥1 0


	 (1)

where each random basic variable Xi was substituted by its design 
value, Xid. According to FORM, representing the cumulative 
distribution function of Xi by FXi(x), the design value Xid is given by1:

1	 The point (X1d,...,Xnd), called design point, is the point belonging to the surface
g = 0 with the highest probability density, being therefore the point where a 
possible rupture is most likely to occur.
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( )( )iid X iX F −= Φ −α β1 	 (2)

where Φ() is the standard Normal cumulative distribution, αi is the 
FORM sensitivity factor of Xi for the limit state under consideration 
and β is the reliability index for that limit state.

The sensitivity factor αi measures the contribution of the uncertainty 
of the variable Xi to the reliability β [7]. For a given limit state
M = g(X1,...,Xn), composed by n basic variables, the α-factors have 
the following properties:

i− ≤ α ≤1 1 	 (3)

n

i
i=

α =∑ 2

1

1 	 (4)

For a basic variable X representing an action, its design value is given 
by Xd = γf Xk, where γf is the partial factor and Xk the characteristic 
value. Thus, a general expression for γf is:

( )( )Xd
f

k k

FX
X X

− Φ −α×β
γ = =

1

	 (5)

For a basic variable X representing a resistance, the design value is 
given by Xd = Xk /γm, where Xk is the characteristic value of X and γm 
the partial factor of X. Thus, γm can be expressed by:

( )( )
k k

m
d X

X X
X F −γ = =

Φ −α×β1 	 (6)

The characteristic value Xk in Equations (5) and (6) corresponds in 
general to a fractile p of the corresponding distribution functions
FX (e.g. p = 0.95 for actions and p = 0.05 for resistances). In this case, 
Xk is given by:

( )k XX F p−= 1
	 (7)

Note that γf and γm depend on the fractile p associated to the 
characteristic value used to compute the design value. In the case 
of actions, increasing p causes a decrease in γf, and in the case of 
resistances, increasing p causes an increase in γm.

The value of the reliability index β in Equations (5) and (6) can be 
regarded as the target value βT, as specified in codes, which depends 
on the consequences of failure and on the marginal cost of safety 
[8]. Eurocode 0 [2] defines three Reliability Classes (RC1, RC2 and 
RC3), corresponding to low, medium and high consequences. 
The target values of the reliability for each Reliability Class 
are reproduced in Table 1. As shown, the recommended target 
reliability indexes are presented for two reference periods: 1 and 
50 years, which correspond to the same level of reliability [9]. The 
column “50 years” should be interpreted as the reliability for the 
design working life (or residual working life, in the case of existing 
structures), irrespective of its duration [10]. When the design 
working life is 50 years, then the annual reliability has the value 
indicated in column “1 year”.

The target reliabilities specified in Eurocode 0 [2] are intended 
mainly for new structures. For existing structures, it has been 
recognized that values lower than these are more appropriate [11], 

as the marginal cost of safety is greater for existing structures. This 
subject, although pertinent, is outside the scope of this study, so it 
will not be addressed here.

Table 1	 Target values of reliability index as specified in [2]

Reliability
Class

Consequences
Reference period

1 year 50 years

RC3 High 5.2 4.3

RC2 Medium 4.7 3.8

RC1 Low 4.2 3.3

The key point of the methodology for calibrating partial factors 
using FORM lies in the sensitivity factors. The sensitivity factor 
α for a particular variable varies from limit state to limit state. 
However, it is possible to identify certain common values of this 
factor. The standard ISO 2394 [4] proposes the values shown in 
Table 2, which were also adopted in Eurocode 0 [2]. It should be 
noted that these values are generally conservative. For example, 
for a limit state composed by only 2 basic variables, one action and 
one resistance, the first is naturally the dominant action, and the 
second is the dominant resistance. Using then the values proposed 
by those standards, the sum of the squares of the α-factors for that 
limit state is (− 0.7)2 + (0.8)2 = 1.13, which is greater than 1, showing 
that the sensitivity factors of −0.7 and 0.8 are conservative when 
used together. If there are more than two basic variables, the degree 
of conservatism increase.

Table 2	 Standardized α-values as specified in [4]

Basic variable α

Dominating action................................................................................. − 0.70

Remaining actions (accompanying actions)......0.40(− 0.70)...... − 0.28

Dominating resistance ......................................................................... 0.80

Remaining resistances............................0.40(0.80)........................... 0.32

According to Clause C.7 (3) of [2], the values in Table 2 should be 
used only if:

E

R

. .
σ

< <
σ

0 16 7 6 	 (8)

where σE is the standard deviation of the dominating load effect 
and σR the standard deviation of the dominating resistance. If this 
condition is not valid, α = ± 1.0 should be used for the variable with 
the highest standard deviation and α = ± 0.4 for the remaining 
variables. The “−” sign is to be used for variables that decrease 
reliability (in general loads) and the “+” sign is to be used for variables 
that increase reliability (in general resistances).

In the next sections, the standardized α-values and Equations (5) 
and (6) will be used to derive expressions for partial factors of basic 
variables with specific probabilistic models.

In the specific case of variable actions, Eq. (5) should be applied with 
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care. The probability distribution of variable actions refers in general 
to the maxima over a reference period. Obviously, the reference 
period implicit in β in Eq. (5) must be the same. On the other hand, 
the sensitivity factor α for a given variable action depends also 
on the reference period, as it depends on the standard deviation 
of the action, which, in turn, depends on the reference period. It 
can be assumed that the standardized α-values recommended in 
[2] applies to the design working life. Then, to obtain γf-factors for 
variable actions using (5), the reference period implicit in β and in 
the distribution of maxima should be the design working life.

Note also that the partial factors obtained from Equations (5) and 
(6) reflect only the uncertainty of the variable itself, as described by 
the function FX(·), and therefore cannot be directly compared with 
the partial factors specified in Eurocodes, since these also reflect 
the uncertainty in models present in the limit state functions. Next 
section deals with model uncertainties.

3	 Model uncertainties
A limit state function, symbolically represented by M = g (X1,...,Xn),
describes how the safety margin M is obtained from the basic 
variables X1,...,Xn. These variables are called basic in the sense 
that they are not obtained from others [12]. In the definition of g, 
however, it is necessary to use variables other than the basic ones, 
that is, variables that are functions of the basic ones. These functions, 
or models, are basically of three types, as suggested in Figure 1:

•	 Action models, Q = Q(X1,...,Xn), which transform basic variables 
into loads.

•	 Structural models, E = E(Q), which transform loads into load 
effects.

•	 Resistance models, R = R(X1,...,Xn), which transform basic 
variables into resistances, expressed in the same domain as the 
load effect E.

Figure 1	 Models present in a typical limit state function

These models do not translate reality perfectly, due to deliberate 
simplifications or neglected effects, which originate new 
uncertainties in addition to those included in the basic variables. 

Although such uncertainties are clearly of the epistemic type, they 
should be modelled by means of random variables. These variables, 
usually represented by the Greek letter θ, should be added to the 
vector of the basic variables and are usually included in a model 
Y = Y (X1,...,Xn) in one of the following formats: Y = θ · Y (X1,...,Xn) or
Y = θ + Y (X1,...,Xn) [13]. The first format is more common [14] and will 
be used in the present study.

3.1	 Uncertainty in action and in structural models

Let θE be the random variable accounting for the uncertainties in 
both action models and structural models. If E(X1,...,Xn) represents 
the load effect as given by those models, and E the true load effect, 
the variable θE is defined so that:

( )E nE E X , ,X= θ ⋅ 1  	 (9)

Consequently, according to the partial factors method, the design 
value of E is given by:

( )d Ed d ndE E X , ,X= θ ⋅ 1  	 (10)

where θEd represents the design value of the variable θE. On the other 
hand, according to EN 1990 [2], Ed is given by:

( )d Sd d ndE E X , ,X= γ ⋅ 1  	 (11)

where γSd is the partial factor associated with the uncertainty of 
the action and structural models. Comparing (11) to (10) it follows 
that the partial factor γSd coincides with the design value θEd. Thus, 
representing the CDF of θE by FθE(·), Eq. (2) yields:

( )( )ESd EF −
θγ = Φ −α β1 	 (12)

where αE is the FORM sensitivity factor of θE.

Like other basic variables, θE has its own mean and standard 
deviation. Ideally, the mean µθE should be close to 1.0, but frequently 
is lesser than 1.0, as the models employed to compute the load 
effect E are often conservative. The mean µθE can be regarded as 
a measure of the accuracy (bias) of those models, that is, their 
ability to predict load effects with mean close to the real value. The 
standard deviation σθE can be regarded as a measure of the precision 
of the same models, that is, their ability to predict load effects with 
little dispersion between each other. The lack of precision can be due 
to variables neglected in the structural analysis. For example, there 
may be environmental influences that may affect the response of 
the structure but are not normally taken into account.

The variable θE is in general modelled by a Lognormal distribution 
[13, 15].

3.2	 Uncertainty in resistance models

Let θR be the random variable accounting for the uncertainties in 
the resistance model underlying a given limit state. If R(X1,...,Xn) 
represents the resistance predicted by that model, and R the true 
resistance, the variable θR is defined so that:

( )R nR R X , ,X= θ ⋅ 1  	 (13)
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Consequently, the design value of R is given by:

( )d Rd d ndR R X , ,X= θ ⋅ 1  	 (14)

where θRd represents the design value of the variable θR. According to 
EN 1990 [2], Rd is given by:

( )d d nd
Rd

R R X , ,X= ⋅
γ

1
1



	 (15)

where γRd is the partial factor associated with the uncertainty of the 
resistance model. Comparing (15) to (14) it follows that the partial 
factor γRd coincides with the reciprocal of the design value θRd. In this 
way, representing the CDF of θR by FθR(·), Eq. (2) gives:

( )( )Rd
R RF −

θ

γ =
Φ −α β1

1
	 (16)

where αR is the FORM sensitivity factor of θR.

As for the variable θE, the mean of θR is a measure of the accuracy 
of the resistance model and the standard deviation a measure of 
its precision. If a resistance model is relatively accurate (small 
systematic errors, or small bias), the mean of θR will be close to 1.00. 
(Frequently, the mean is greater than 1.0 due to the usual degree of 
conservatism in the resistance models.) If, in addition, the model is 
relatively accurate (small random errors) the standard deviation of 
θR will be small.

The variable θR is in general modelled by a Lognormal distribution 
[13, 14].

4	 Partial factors for actions

4.1	 γf-factors

4.1.1	 Actions with normal distribution

Let X be a basic variable representing an action, and assume that
X ∼ N(µ,σ). Considering the expression for the inverse of the Normal 
distribution, Eq. (5) leads to:

( )
f

k

V
X

µ −αβ
γ =

1

	 (17)

where V = σ/µ is the coefficient of variation of the variable under 
consideration, α is the FORM sensitivity factor of X and β is the 
desired reliability index for the limit state under consideration. In 
the case the characteristic value Xk refer to the fractile p, Eq. (17) 
becomes:

( )f
V
p V−

−αβ
γ =

+Φ 1

1
1

	 (18)

For permanent actions due to selfweight, g, its nominal value refers 
frequently to the mean value (instead of a fractile). Hence, for this 
specific case, the partial factor is:

g Vγ = −αβ1 	 (19)

4.1.2	 Actions with lognormal distribution

For an action with Lognormal distribution, with mean µ and 
coefficient of variation V , Eq. (5) leads to:

( )( )
f

k

V
V

X

µ
−αβ +

+γ =

2

2
exp ln 1

1 	 (20)

If Xk refers to the fractile p, then ( )k XX F p−= 1  and Eq. (20) becomes:

( ) ( )( )( )f V p−γ = + −αβ−Φ2 1exp ln 1 	 (21)

4.1.3	 Actions with Gumbel distribution

Given an action with Gumbel distribution (also known as Extreme 
Type I distribution of maxima) with mean µ and coefficient of 
variation V , Eq. (5) yields the following expression:

( )( )( )
f

k

. V .

X

 µ − + − Φ −αβ γ =
1 0 78 0 58 ln ln 	 (22)

The Gumbel distribution is frequently recommended in modelling 
maxima of variable actions in a given reference period, as is the 
case in Eurocodes for climatic actions. Recall that, assuming that α 
applies to the design working life, β must also refers to the design 
working life (or the remaining working life for an existing structure, 
if defined). As a consequence, the reference period implicit in 
parameters µ and V in Eq. (22) must be the design working life.

In general the characteristic value of variable actions refer to the 
fractile p. In this case Eq. (22) becomes:

( )( )( )
( )( )f

. V .

. V .  p

− + − Φ −αβ
γ =

− + −

1 0 78 0 58 ln ln

1 0 78 0 58 ln ln
	 (23)

The fractile p is the probability that the characteristic value is not 
exceeded in the reference period, which, as mentioned, must be the 
design working life. A typical value is p = 0.95 [16], but this is not 
always the case in Eurocodes: for example, the characteristic values 
of climatic actions refer to the fractile 0.98 of the annual maxima. 
Thus, for a structure with a design working life of n years the fractile 
for climatic actions to be used in Eq. (23) must be p = 0.98n.

As an example, consider a structure for which the wind is a 
dominant action (α = − 0.7), and assume a coefficient of 
variation of 0.13 regarding the annual maxima. Assume that the 
structure belongs to the Reliability Class RC2 (β = 3.8) and that 
the design working life is 50 years. The coefficient of variation 
of 0.13 must be transformed in this period of time, as follows: 

π = π + = 
 

V
V 1

6 ln50 0.093 . Assuming that the characteristic 

value is quantified according to the Eurocodes, the γf-factor for the 
wind action would be:

( ) ( )( )( )
( ) ( )( )

   

  

f
. . . . .

.
. . . .

− − − Φ ×
γ = =

− + − 50

1 0 78 0 093 0 58 ln ln 0 7 3 8
1 42

1 0 78 0 093 0 58 ln ln0 98
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4.1.4	 Actions with Fréchet distribution

The Fréchet distribution, also known as Extreme Type II distribution 
of maxima, is also an important distribution in modelling maxima 
of variable actions, namely those connected with extreme 
meteorological phenomena [17]. Consider an action whose maxima 
follows a Fréchet distribution with shape parameter k (see Annex A 
for details on this distribution). The parameter k is directly related to 
the coefficient of variation. Table 3 shows values of k corresponding 
to some values of V.

Using once more Eq. (5) with Xk = FX
 −1(p), the following expression for 

the partial factor of a variable with Fréchet distribution is obtained:

( )
 

   

k

f
p γ =  Φ −αβ 

1

ln
ln

	 (24)

As before, for variable actions, the fractile p, the reliability index β 
and the parameter k must refer to the design working life.

Table 3	 Values of the parameter k corresponding to different 
coefficients of variation – Fréchet distribution

V k

0.05 26.41

0.10 13.62

0.15 9.37

0.20 7.26

0.25 6.01

0.30 5.18

4.1.5	 Examples

Table 4 exemplifies values of γf-factors obtained using the expressions 
presented above, considering different coefficients of variation and 
different Reliability Classes. In all expressions the values α = −0.70 
and p = 0.95 were considered.

As can be seen, the Fréchet model leads to the highest partial factors, 
and the Normal model the lowest. This result was already expected 
considering the weight of the upper tails of these models, which is 
smaller in the Normal model and larger in the Fréchet model. It is 
also seen that the higher the coefficient of variation, the greater the 
difference in partial factors obtained in the different models. For low 
coefficients of variation, the differences between the 4 models is 
relatively small. It can thus be concluded that for high coefficients 
of variation the choice of the probabilistic model is more important.

It is also interesting to observe the influence of the Reliability Classes 
on the partial safety factors. For usual coefficients of variation 
(values between 0.15 and 0.20), raising a Reliability Class results in 
an increase of about 15% in the partial factor.

Figure 2 plots the results shown in Table 4 for the Reliability Class 
RC2 (β = 3.8). As it is seen, for coefficients of variation larger than 
0.38, the Lognormal model becomes more conservative (in the 
sense that it leads to higher partial factors) than the Gumbel model.

Table 4	 Partial factors for actions, γf (α = − 0.7, p = 0.95)

Model V

Consequences

Low
(b = 3.3)

Medium
(b = 3.8)

High
(b = 4.3)

Normal

0.05 1.03 1.05 1.06

0.10 1.06 1.09 1.12

0.15 1.08 1.12 1.16

0.20 1.10 1.15 1.21

0.25 1.12 1.18 1.24

0.30 1.13 1.20 1.27

Lognormal

0.05 1.03 1.05 1.07

0.10 1.07 1.11 1.15

0.15 1.10 1.16 1.23

0.20 1.14 1.22 1.31

0.25 1.18 1.28 1.40

0.30 1.22 1.35 1.49

Gumbel

0.05 1.06 1.09 1.13

0.10 1.10 1.17 1.24

0.15 1.14 1.23 1.34

0.20 1.18 1.29 1.42

0.25 1.21 1.34 1.49

0.30 1.24 1.39 1.55

Fréchet

0.05 1.06 1.10 1.15

0.10 1.12 1.21 1.31

0.15 1.18 1.32 1.48

0.20 1.24 1.43 1.66

0.25 1.30 1.53 1.84

0.30 1.36 1.64 2.03
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Figure 2	 γf-factors as a function for different probabilistic models.

4.2	 γSd-factors

4.2.1	 General expression

The variable θE is in general modelled by a Lognormal distribution 
[13, 15]. Thus, using the expression for the inverse of Lognormal 
model, Eq. (12) yields:

( )( )E
Sd E E

E

 V
V

θ
θ

θ

µ
γ = ⋅ −α β +

+
2

2
exp ln 1

1
	 (25)

where µθE and VθE are the mean and coefficient of variation of the 
variable θE. If VθE ≤ 0.20, Eq. (25) can be approximated by:

( )   Sd E E EVθ θγ ≈ µ ⋅ −α βexp 	 (26)

The mean µθE and the coefficient of variation VθE reflect the accuracy 
and precision of the models used and should therefore be chosen 
carefully on a case-by-case basis.

It is possible to find in literature recommendations concerning 
statistical parameters of θE. Table 5 shows the JCSS recommendations 
[13]. The Danish guide [18] recommends VθE = 0.04 for structural 
models with good accuracy, VθE = 0.06 for models with normal 
precision and VθE = 0.09 for models with low precision.

Table 5	 Probabilistic models for the variable θE, as recommended 
by JCSS [13]

Type of 
structural

model
Response Distribution µθE VθE

Frame models
Moments Lognormal 1.00 0.10

Axial forces Lognormal 1.00 0.05

Shell models

Shear forces Lognormal 1.00 0.10

Moments Lognormal 1.00 0.20

Forces Lognormal 1.00 0.10

4.2.2	 Examples

Table 6 exemplifies values of γSd obtained using Eq. (25) for different 
pairs (µθE, VθE), considering the case α = − 0.28 (i.e. assuming that 
the variable θE is non dominant, as indicated in Table 2). For models 
with µθE < 1.00 and small VθE, the γSd -factor is less than 1.00, which 
means that those models are globally conservative.

Table 6	 Partial factors for model uncertainties of load effects,
γSd (α = − 0.28)

µθE VθE

Consequences

Low
(β = 3.30)

Medium
(β = 3.80)

High
(β = 4.30)

0.90

0.05 0.94 0.95 0.95

0.10 0.98 1.00 1.01

0.15 1.02 1.04 1.07

0.20 1.06 1.09 1.12

1.00

0.05 1.05 1.05 1.06

0.10 1.09 1.11 1.12

0.15 1.14 1.16 1.18

0.20 1.18 1.21 1.25

1.10

0.05 1.15 1.16 1.17

0.10 1.20 1.22 1.23

0.15 1.25 1.28 1.30

0.20 1.30 1.33 1.37

In most cases, γSd-factors will be between 1.05 and 1.15, as 
recommended in EN 1990 [2], Table A1.2 (B).

4.3	 γF - factors

Once defined the factors γf and γSd, the design value Ed for a given 
limit state can be evaluated according to Eurocode 0 [2], as follows 
(see Eq. (11)):

( )  d Sd f k f kE E F , F ,= γ ⋅ γ γ1 1 2 2  	 (27)

where F1, F2,... represent actions and other basic variables relevant for 
the load effect E. As an alternative, Ed can be computed by:

( )  d F k F kE E F , F ,= γ γ1 1 2 2  	 (28)

where the factors γFi are given by:

 Fi Sd fiγ = γ γ 	 (29)

Clearly, Equations (27) and (28) give the same result only if the 
load effect E is a linear function of the basic variables Fi. However, 
according to [2], both equations are acceptable.

In short, the factors γFi = γSd γfi intends to take into account all 
uncertainties in the actions side and are comparable to the factors 
for actions specified in Eurocodes.
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5	 Partial factors for resistances

5.1	 γm - factors

5.1.1	 Resistances with normal distribution

Using Eq. (6) and the inverse of the Normal distribution, the partial 
factor for resistances with Normal distribution and coefficient of 
variation V is given by:

( )
  

m
p V
V

−+Φ
γ =

−αβ

11
1

	 (30)

where p is the fractile used to quantify the characteristic value of the 
resistance under consideration. For resistances, the 0.05 fractile is 
frequently used. Thus, considering that Φ– 1(0.05) = − 1.645, for this 
particular fractile the partial factor is:

  

m
.  V

V
−

γ =
−αβ

1 1 645
1

	 (31)

5.1.2	 Resistances with lognormal distribution

Adopting a procedure similar to that used for actions with Lognormal 
distribution, the following expression is derived:

( ) ( )( )( ) m V p−γ = + αβ+Φ2 1exp ln 1 	 (32)

5.1.3	 Resistances with Weibull distribution

Consider now a resistance variable with distribution Wb(∈,u,k), whose 
domain is x ≥ ∈. The frequent case ∈ = 0 will be considered in 
the following. Using the inverse of the Weibull distribution (see 
Annex A), the Eq. (6) leads to the following partial factor:

( )
( )( )  

k

m
p −

γ =   −Φ −αβ 

1

ln 1
ln 1

	 (33)

The parameter k is a shape parameter which is directly related to the 
coefficient of variation. For the case∈ = 0, k depends solely on the 
coefficient of variation V. Table 7 shows values of k corresponding to 
some values of V.

Table 7	 Values of the parameter k corresponding to different 
coefficients of variation — Weibull distribution

V k

0.05 24.95

0.10 12.15

0.15 7.91

0.20 5.80

0.25 4.54

0.30 3.71

5.1.4	 Examples

Table 8 shows γm-factors obtained using the equations (31), (32) 
and (33), considering in all cases α = 0.80 and p = 0.05. For the 
Normal distribution, the partial factors were computed considering 
a maximum coefficient of variation of 0.25. Above this value, 
modelling resistances with Normal distribution is questionable, 
since the probability of obtaining negative resistances becomes 
non negligible. In effect, for a Normal variable X with coefficient 
of variation V, P(X < 0) = Φ(−1/V ) and for V = 0.25, P(X < 0) =
= 3.2 × 10−5, which is of the order of magnitude of the usual failure 
probabilities and consequently is not negligible.

Table 8	 Partial factors for resistances, γm (α = 0.80, p = 0.05)

Model V

Consequences

Low
(β = 3.3)

Medium
(β = 3.8)

High
(β = 4.3)

Normal

0.05 1.06 1.08 1.11

0.10 1.14 1.20 1.27

0.15 1.25 1.38 1.56

0.20 1.42 1.71 2.15

0.25 1.73 2.45 4.21

Lognormal

0.05 1.05 1.07 1.09

0.10 1.10 1.15 1.20

0.15 1.16 1.23 1.31

0.20 1.22 1.32 1.43

0.25 1.28 1.41 1.56

0.30 1.34 1.51 1.69

Weibull

0.05 1.11 1.16 1.23

0.10 1.23 1.36 1.53

0.15 1.37 1.61 1.92

0.20 1.54 1.92 2.44

0.25 1.74 2.29 3.12

0.30 1.97 2.76 4.03

Observing Table 8, it is seen that the Weibull model is the most 
conservative (in the sense that it leads to higher partial factors), 
and the Lognormal is the least conservative. This result is a direct 
consequence of the weight of the left tails, being heavier in the 
Weibull model and lighter in the Lognormal model.

Moreover, the difference between models is more significant for high 
coefficients of variation, similarly to what was observed regarding 
partial factors for actions. As a result, when choosing a probabilistic 
model for a resistance variable, more attention must be paid if a 
variable has high coefficient of variation.
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Figure 3 plots the results shown in Table 8 for the Reliability Class 
RC2 (β = 3.8). As it is seen, for coefficients of variation greater than 
0.23, the Normal model is more conservative than the Weibull 
model, which shows that above that coefficient of variation the 
left tail of the Normal model becomes heavier comparatively with 
the Weibull model. Nevertheless, as mentioned above, the Normal 
model should not be used in modelling resistances with high 
coefficients of variation.

Figure 3	 Partial factors for resistances

5.2	 γRd-factors

5.2.1	 General expression

The variable θR is in general modelled by a Lognormal distribution 
[13, 14]. Thus, using the expression for the inverse of the Lognormal 
model, Eq. (16) yields:

( )( ) 

Rd
R

R R

R

V
V

θ
θ

θ

γ =
µ

⋅ −α β +
+

2

2

1

exp ln 1
1

	 (34)

where µθR and VθR are the mean and coefficient of variation of θR. If 
VθR ≤ 0.20, Eq. (34) can be approximated by:

( )  

Rd
R R RVθ θ

γ ≈
µ ⋅ −α β

1
exp

	 (35)

The mean µθR and the coefficient of variation VθR should be chosen 
carefully case-by-case, since they depend on the accuracy and 
precision of the resistance model in use.

Table 9 shows the recommendations of JCSS [13] concerning the 
variable θR. As shown, the recommended mean for θR is higher 
than unity in all cases, which reflects the perception that resistance 
models are generally conservative. The values in Table 9 should be 
interpreted as mere indication and should be adjusted on a case- 
-by-case basis, depending on the confidence in the resistance model 
being used.

In a recent study [19], based on a survey involving several hundreds 
of laboratory tests, the authors proposed for concrete structures 

the models shown in Table 10. The proposed statistical parameters 
applies to concrete structures not affected by corrosion, designed 
according to Eurocode 2 [20]. As observed, for members requiring 
design shear reinforcement, the resistance model proposed in 
[20], based on Mörsch truss without any correcting factor, is rather 
conservative.

Table 9	 Probabilistic models for the variable θR, as recommended 
by JCSS [13]

Structural 
material

Resistance
type

Distribution µθR VθR

Structural
steel

Bending capacity Lognormal 1.00 0.05

Shear capacity Lognormal 1.00 0.05

Welded connection capacity Lognormal 1.15 0.15

Bolted connection capacity Lognormal 1.25 0.15

Reinforced 
concrete

Bending capacity Lognormal 1.20 0.15

Shear capacity Lognormal 1.40 0.25

Table 10	 Probabilistic models for θR for sound concrete structures 
[19]

Resistance type Distribution µθR VθR

Axial compression without effects
of buckling

Lognormal 1.00 0.05

Bending Lognormal 1.075 0.075

Shear in members without special shear 
reinforcement

Lognormal 1.00 0.20

Shear in members with lightly shear 
reinforcementa Lognormal 1.825 0.25

Shear in members with moderately shear 
reinforcementb Lognormal 1.275 0.20

a	 rw fyw < 1 MPa	 b	 1 < rw fyw ≤ 2 MPa

5.2.2	 Examples

Table 11 exemplifies values of γRd obtained using Eq. (34) for different 
pairs (µθR, VθR). As observed, in many cases γRd is less than 1.00. In 
those cases the random errors in the resistance model (as reflected 
in VθR) were counterbalanced by the favourable systematic errors (as 
reflected in µθR greater than 1.00).

5.3	 γM-factors

Once γm and γRd-factors are defined, the design value Rd for a given 
limit state can be evaluated according to Eurocode 0 [2], as follows 
(see Eq. (15)):

k k
d

Rd m m

f f
R R , , = ⋅  γ γ γ 

1 2

1 2

1


	 (36)
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where f1, f2,..., represent resistances and other basic variables relevant 
for the resistance R. As an alternative, Rd can be computed by:

k k
d

M M

f f
R R , , =  γ γ 

1 2

1 2

 	 (37)

where the factors γMi are given by:

 Mi Rd miγ = γ γ 	 (38)

Clearly, Equations (36) and (37) give the same result only if the 
resistance R is a linear function in the basic variables fi. However, 
according to [2], both alternatives are acceptable. In short, the 
factors γMi = γRd γmi intends to take into account all uncertainties in 
the resistance side and are comparable to the factors for resistances 
specified in Eurocodes.

Table11	 Partial factors for uncertainties in resistance models,
γRd (α = 0.32)

µθR VθR

Consequences

Low
(β = 3.30)

Medium
(β = 3.80)

High
(β = 4.3)

1.00

0.05 1.06 1.06 1.07

0.10 1.12 1.13 1.15

0.15 1.18 1.21 1.24

0.20 1.26 1.30 1.34

1.10

0.05 0.96 0.97 0.98

0.10 1.02 1.03 1.05

0.15 1.08 1.10 1.13

0.20 1.15 1.18 1.22

1.20

0.05 0.88 0.89 0.89

0.10 0.93 0.95 0.96

0.15 0.99 1.01 1.04

0.20 1.05 1.08 1.12

1.30

0.05 0.81 0.82 0.83

0.10 0.86 0.87 0.89

0.15 0.91 0.93 0.96

0.20 0.97 1.00 1.03

1.40

0.05 0.75 0.76 0.77

0.10 0.80 0.81 0.82

0.15 0.85 0.87 0.89

0.20 0.90 0.93 0.96

6	 Conclusions
Expressions for the determination of partial factors based on the 
concept of FORM design value were presented. Two groups of partial 
factors were distinguished, namely, partial factors for basic variables 
representing actions and material resistances (γf and γm), and partial 
factors for variables representing model uncertainties (γSd and γRd).

Regarding the first ones, the expressions presented show that those 
factors depend on:

•	 probabilistic model used to describe uncertainty in the basic 
variable;

•	 coefficient of variation of the variable;

•	 fractile implicit on the characteristic value used to compute the 
design value;

•	 importance of the variable in the limit state under consideration 
(measured by the respective sensitivity factor);

•	 target reliability index.

The choice of the type of probabilistic model influences significantly 
the partial factors and this influence rises as the coefficient of 
variation increases. This means that more attention must be 
paid when choosing a probabilistic model for a variable with high 
coefficient of variation.

The expressions presented were exemplified using the coefficients of 
sensitivity recommended in [2] for dominant actions and dominant 
resistances, respectively α = − 0.70 and α = 0.80. The cases for non-
dominant variables (α = −0.28 and α = 0.32) can lead to partial 
factors γf or γm less than 1.0. In fact, the characteristic value of a 
basic variable incorporates already some safety margin, because it is 
a relatively small fractile (0.05 in the case of materials) or a relatively 
large one (0.95 in the case of actions). Obtaining safety factors 
less than 1.0 means that the safety incorporated in characteristic 
values is far sufficient for the intended reliability. Note that this is 
in agreement with the use of the ψ0 factor connected to the partial 
factors method, in which ψ0 multiplied by the safety factor gives a 
value frequently less than 1.0.

Regarding partial safety factors for model uncertainties (γSd and 
γRd), they have a slightly different nature when compared to γf and 
γm-factors, because they coincide with the design values of the 
variables accounting for model uncertainties, θE and θR, that is, they 
incorporate both characteristic values and safety factors.

Expressions presented for γSd and γRd show that these factors depend 
essencialy on:

•	 mean and coefficient of the corresponding variation of variable 
θ;

•	 importance of the variable θ in the limit state under consideration 
(measured by the respective sensitivity factor);

•	 target reliability index.

The mean and coefficient of variation of the variables accounting 
for model uncertainties have a well defined meaning: the first one 
constitutes a measure of the model accuracy, that is, its ability 
to predict values with small systematic errors; the second one 
constitutes a measure of the model precision, that is, its ability to 
predict values with small random errors (low variability).
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Recent studies have dealt with the accuracy and precision of the 
resistance models specified in Eurocode 2 [20] for reinforced 
concrete members. Similar studies are desirable regarding action 
models and structural models as well.
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Annex

Probabilistic models used in the article
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