
Sensors & Transducers, Vol. 252, Issue 5, October 2021, pp. 28-34 

 28

 
Sensors & Transducers

Published by IFSA Publishing, S. L., 2021 
http://www.sensorsportal.com

 
 
 
 
 

Systematic Failure Detection and Correction 
in Environmental Monitoring Systems 

 
1, * Gonçalo de JESUS, 1 Anabela OLIVEIRA and 2 António CASIMIRO 

1 DHA-GTI, Laboratório Nacional de Engenharia Civil, Avenida do Brasil 101,  
1700-066 Lisboa, Portugal 

2 LASIGE, Faculdade de Ciências, Universidade de Lisboa, Campo Grande,  
1749-016 Lisboa, Portugal 

1 Tel.: +3512184443422 
E-mail: gjesus@lnec.pt 

 
 

Received: 29 July 2021   /Accepted: 30 September 2021   /Published: 31 October 2021 
 
 
Abstract: Sensor networks used in environmental monitoring applications are subject to harsh environmental 
conditions and hence are prone to experience failures in its measurements. Comparing to the common task of 
outlier detection in sensor data, we review herein the complex problem of detecting systematic failures such as 
drifts and offsets. Performing this detection in environmental monitoring networks becomes a stringent task 
especially when we need to distinguish data errors from real data deviations due to natural phenomenon. In this 
paper, we detail the scope of events and failures in sensor networks and, considering those differences, we 
introduce a new instantiation of a proven methodology for dependable runtime detection of outliers in 
environmental monitoring systems to address drifts and offsets. Lastly, we discuss the use of machine learning 
techniques to estimate the network sensors measurements based on the knowledge of processed past 
measurements alongside with the current neighbor sensors observations.  
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1. Introduction 

 
When monitoring harsh environments, deployed 

sensors have to perform under unfavorable conditions, 
producing occasionally failures of several types. 
Measurements may be imprecise, incorrect, 
incomplete, incoherent or inappropriate to the problem 
at hand. Sensors may exhibit errors due to faults in 
sensors or other sources (e.g. communication), either 
being outliers, temporary disturbances or systematic 
deviations. These errors can ultimately contribute to 
the issuing of false warnings or wrong management 
decisions. We focus here on real environments subject 
to harsh conditions, namely aquatic environments. 

Many of the existing techniques for fault detection do 
not consider the presence of natural phenomena 
interfering with sensor measurements [1, 2]. These 
phenomena can ultimately lead to deviations in 
measurements that might be wrongly perceived as 
errors. In this paper we consider physical phenomena 
as events, which are natural occurrences and their 
impact on measurements should not lead to wrongly 
detect faulty behaviors. 

In the past decade there have been many studies 
supporting the use of machine learning techniques and 
sensor fusion to identify or classify events, including 
failure situations [3, 4]. The most common situations 
are related to faulty data observations due to spurious 
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errors, such as outliers or to communication faults or 
outliers derived from sensor faults. In fact, detection 
and mitigation techniques for drifts and offsets in the 
context of sensor networks have not been addressed 
thoroughly. Herein, we introduce a solution to detect 
and correct offsets and drifts, characterized by a 
systematic failure behavior observed during a 
determined time interval. These errors often occur 
when a sensor is functioning during a long period of 
time without intervention, requiring additional 
automated procedures to identify and correct faults in 
the measurements. In [5], we characterized a 
methodology that uses prediction methods and failure 
detection techniques in order to promote the 
identification of failure behaviors in sensor 
measurements. 

Herein we propose an instantiation of the 
methodology presented in [6], comprising machine 
learning strategies for the prediction of the expected 
sensor measurements of each sensor node, but now 
accounting only for faults related to drifts and offsets. 

This paper is organized as follows. In Section 2, 
we identify related work on mechanisms and 
techniques for detecting offsets and drifts, including 
the use of data fusion strategies. In Section 3 we 
briefly overview the base methodology and in 
Section 4 we describe the proposed instantiation and 
assumptions required for the application for drifts and 
offsets detection. 

 
 

2. Related Work 
 
Methods for detection and correction of drifting 

and offset failure behaviors in sensor devices are 
different for single device and multiple devices 
(network). In the first category, we discuss calibration 
and its variants as a process to prevent and correct such 
failures. In contrast, in a multi-sensor situation, it is 
possible to use data fusion techniques in order to detect 
and correct drifts and offsets. 

The re-calibration process of sensors is usually 
performed off-field by removing the sensor of the 
monitoring environment and recalibrating it in 
controlled conditions, with potential data loss if no 
redundant way of collecting sensor data is available 
(and the added re-deployment costs). 

Although sensor calibration may be sometimes a 
costly operation, given its frequency, it is necessary to 
assure the maintenance of good quality data. In order 
to minimize the number of interventions in the sensor, 
a possible alternative is the auto or self-calibration, 
which is a software-based procedure to enable sensors 
to monitor themselves and self-calibrate using a 
reference. This latter option, being adaptive, is 
potentially better to deal with varied and even 
unpredicted circumstances, and is also designated as 
measurand reconstruction or sensor compensation. 

The auto-calibration process is referred to the 
methods aimed at diminishing the effect of the 
disturbing parameters in the features of sensors. The 
sensor becomes less sensible to past information, 

interfering environmental factors and noise. This is 
possible via numerical techniques that compensate the 
disturbances. These techniques are applied after the 
transformed signal being quantified, through digital 
signal processing. This method has been used with 
relative success, for instance exploiting statistical 
regression based on a priori knowledge [6] or using 
artificial neural networks [7, 8]. 

For the multi-sensor scenario, particularly in the 
context of sensor networks, these automatic 
calibration techniques have also been studied to 
correct drifts and offsets failures. However, these 
techniques only consider blind calibration, which 
means that there are no detection mechanisms for data 
faults. One of the first works is presented in [9], where 
the authors designed an algorithm to be used in high-
density sensor networks in a post-deployment phase. 
This algorithm uses temporal correlations between 
pairs of neighbor sensors to correct their signal 
(measurements). An additional phase of the algorithm, 
particularly useful in the context of multi-sensor 
networks, is explained as an optimization step by 
dealing with groups or clusters of sensor nodes. 

Balzano, et al. [10] deals with blind calibration in 
sensor networks softening the high-density 
requirement, assuming a linear model for the sensor 
calibration functions, meaning that sensor readings are 
calibrated up to an unknown gain and offset for each 
sensor. They too rely on sensor correlations to model 
their behavior. In fact, data fusion is a common  
subject in blind calibration studies (more examples  
in [11-13]). 

For the single sensor networks scenario, there is a 
limited number of studies considering both detection 
and correction mechanisms of offset and drifts 
failures. Offsets analyses are more common than 
drifting ones, in particular in applications related to 
digital imagery. One exception is [15], where the 
authors present a machine learning approach to detect 
offset and drifts faults in WSNs. Their method consists 
in using Hidden Markov Models to capture both the 
dynamics of the environment and the dynamics of the 
faults. This work also presents an analysis on the 
extracted models to determine the types of faults 
(including offsets) affecting the sensor measurements. 

Concerning specifically drifting failures, a 
research group presented several studies over the last 
years regarding a design and its various improvements 
of a drift-aware sensor network [15-24]. The original 
study presented the concept of a mechanism to detect 
and correct drifts in sensor networks. Afterwards, 
several data fusion techniques were introduced and 
demonstrated to be efficient. The group used statistical 
techniques, Kalman filters, Interacting Multiple 
Model algorithm, Recursive Bayesian algorithm, 
Spatial Kriging method, and ensembles of these 
techniques. Their work has been applied to high-
density sensor networks measuring parameters such as 
temperature but also to image-related networks with 
geospatial information. Provided results in indoor 
sensor networks have proved the methods to be quite 
successful in detecting and correcting drifts and offsets 
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in the range of (-10,10) added to the sensor 
measurements, presenting root mean square errors in 
the range of (5,8). 

Lastly, focusing simply on the detection 
mechanism, [25] presents a fault detection method for 
WSNs based on a multi-scale Principal Component 
Analysis (MSPCA), applied in a laboratory network 
dataset, the same as the previous studies, to detect both 
offsets and drifts failures for temperature sensors. The 
provided results prove that the method is effective in 
detecting artificially injected systematic faults of 
different magnitudes and time duration. 

Although these last studies have promising results 
in the field of detecting drifts and offsets in sensor 
measurements, their focus is mostly in laboratory or 
indoor conditions. Their methods do not consider the 
high variability of environmental monitoring,  
which we take in consideration in the methodology 
presented in [5]. 
 
 
3. Methodology Overview 
 

A methodology for processing measurements from 
multiple sensors is proposed in [5]. This methodology 
addresses failure detection, data quality assessment 
and data correction applied to outliers. The 
methodology is mostly intended to be applied during 
runtime, for the detection of faulty measurements and 
the respective mitigation in a continuous way, during 
the sensor operation. 

The purpose of the methodology is not only to 
detect failures in measurements but also to 
characterize the quality of each measurement and if 
this quality is below some threshold, be able to provide 
an estimation of a replacement measurement with 
better quality. Therefore, a solution for dependable 
data quality needs to encompass the decision-making 
capabilities of a classifier in order to detect faulty 
measurements, as well as the prediction mechanisms 
to model the sensors behaviors to estimate expected 
values for the measurements. However, this 
classification does not necessarily need to be based on 
machine learning approaches. Therefore, for the 
purpose of defining a generic methodology, both types 
of capabilities, that is, detection and estimation,  
are necessary. 

The methodology encompasses the use of 
prediction methods to estimate the expected sensors 
measurements, which in practice exploit machine 
learning techniques. It also encompasses  
failure detection but the concrete techniques to 
implement failure detection may not be based on 
machine learning. 

We defined it to be generally applicable to any 
WSN monitoring system in harsh environments. This 
is accomplished by defining essential functionalities. 
The described methods are proposed independently of 
the physical processes being monitored, but leaving 
room for the selection of methods whose results 
depend on the concrete behavior of the monitored 
processes. 

A sensor network architecture composed of more 
than 1 sensor nodes is assumed where each node is 
equipped with one or more sensors measuring 
different, but correlated physical processes. Sensor 
nodes may be physically distant, but their 
measurements are also correlated. The network has a 
gateway or sink node that receives all sensor 
measurements, although we do not consider a specific 
network topology. The sink node is responsible for 
processing sensor measurements using the proposed 
methodology, making the dependable monitoring data 
available to other systems upstream.  

Regarding temporal aspects, sensor nodes are 
assumed to be configured to periodically transmit a 
new measurement, but no assumption is made on the 
frequency of transmission nor on the synchronization 
between different sensor nodes. Message transmission 
delays are assumed to be negligible in comparison to 
the dynamics of the monitored physical processes. 
Furthermore, all measurements received at the sink 
node are considered to be assigned the timestamp 
obtained from its local clock, allowing temporal 
correlations between independent measurements to be 
considered by the processing methods. The local clock 
at the sink node is assumed to be correct. 

Regarding the assumed fault models, there is a 
specific focus on sensor data with outliers, drifts and 
offsets, regardless the nature of these value faults. The 
handling of omissions (i.e., sporadic loss of a 
measurement) and the crash of sensor nodes are also 
considered, as well as recovery of lost information. 
For crash failures, however, this recovery is  
only partial. 

The methodology requires several models to 
characterize the correct behavior of each sensor, 
composed of one or more supervised learning 
techniques. A preliminary step is to construct these 
models, which requires sensor data with absence of 
measurement errors from all the sensors to be used. 
The models will explore temporal correlations 
between consecutive past measurements of the target 
sensor, spatial and value correlations between past 
measurements of the target sensor and past 
measurements from a variable number of other 
sensors. Spatial correlations are used when the target 
sensor and other sensors are in different geographical 
locations. Value correlations exist for example 
between the target sensor and sensors placed at the 
same location. 

Consequently, the methodology is designed as an 
ensemble of supervised learning methods, which 
require an offline initial training phase for each node’s 
model construction.  

The methodology is composed of 4 blocks that are 
executed for each new received measurement from 
each target sensor. The first block is the Prediction (P) 
block, where we employ prediction methods in order 
to get one or more estimates of the measurement 
expected to be obtained from the target sensor.  

The second block is the Failure Detection (FD) 
block, which objective is to identify possible failure 
behaviors in the target sensor dataset, through 
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procedures that help identify if a measurement is 
considered normal or abnormal, contemplating that 
these anomalies can be caused by a real environmental 
event and not a sensor fault. 

The third block is the Quality Evaluation (QE) 
block. It determines the quality coefficient for the 
measurement and characterizes it whether it is faulty 
or not, setting the coefficient from 0 to 1. 

The fourth and last block is the Measurement 
Reassessment (MR) block, where a replacement for a 
faulty measurement is estimated using as input the 
predictions in the Prediction block. 

A flow diagram of the 4 blocks of the methodology 
is provided in Fig. 1. 

The proposed methodology was evaluated and 
validated by instantiating it for the particular scenario 
of outliers detection and correction [5]. Firstly, we 
developed a solution according the methodology to 
detect outliers in an aquatic monitoring system in the 
Columbia River (Oregon, USA). Lastly, this 
instantiation was further compared with other state-of-
the-art solutions in a benchmark case study for indoor 
monitoring, proving its validity by performing at least 
as good as the best solution in the comparison study. 

 
 

 
 

Fig. 1. Flow diagram of the methodology. 
 
 

4. Systematic Failures Solution 
 

4.1. Objectives 
 
In monitoring networks, solutions for failure 

detection and mitigation need to aim not only to the 
more popular spurious failures as the outliers, but also 
the less frequent scenarios of offsets and drifts. 

Another important concept considered in the 
methodology is the capability to distinguish the sensor 
faults from the environment-related events. These 
events can be perceived by the fault detection 
mechanisms as failures, which in this case are indeed 
false positives. To avoid this problem, we start by 
defining both events and failures as we comprehend 
them in our study. 

We characterize events as the physical phenomena 
that impact the monitored environment to some extent. 
These can be of short duration or long lived like for 

instance heavy rain or incrustation of marine life in the 
sensors. All such events are difficult to predict, and 
may affect the sensors measurements. We consider 
that an event has a wide scope and it is not just a 
localized happening. For instance, an object collision 
with a sensor is a short-lived happening that may 
produce a sensor fault (possibly causing an outlier). 
The presence of animals in contact with or attached to 
a sensor’s structure is an example of a long-lived fault 
(in this case possibly causing an offset error). 

Furthermore, events may lead to deviations from 
expected values in measurements that may be wrongly 
perceived as faults. We want to distinguish between 
events and faults. Therefore, because according to our 
definition, events have a wide scope, we can exploit 
spatial redundancy to deploy multiple sensor nodes 
that will allow us to determine when unusual 
measurements are consistently observed and hence 
report an event. In a natural environment, as 
considered herein, the range of events is very wide and 
heterogenous. It is very hard to define all specific 
event signatures which could help to detect the events 
and differentiate them from faults. Therefore, the 
application of our methodology to offsets and drifts 
detection in these environments considers localized 
events as a fault. 

In the aforementioned methodology, we use 
redundancy and we compare several measurements in 
order to derive conclusions from these comparisons. If 
the sensor is performing as expected, which can be 
determined by analyzing the data produced by the 
sensor using data processing methods, then it is 
considered to be in a normal state. If the data 
processing method detects the existence of some 
anomalous measurements, then it is said to be in a 
failure state. Finally, it is possible that these 
anomalous measurements are also observed in the 
output of all other related sensors. In this case, all the 
sensors are in an event state. Otherwise, we need to 
reason in terms of the majority of observations. If the 
majority of the related nodes produce measurements 
showing anomalies, then the network is in an event 
state. Otherwise, the network is in a normal state and 
the minority of nodes that are not performing as 
expected are in a failure state. 

The above definitions become particularly relevant 
when exploring the spatial correlations between 
neighbor sensors in order to correctly identify both the 
event and the failure behavior [26]. More importantly, 
these are the foundations for the implementation of the 
solution for systematic failures. 

For the instantiation of the methodology to the 
detection and correction of systematic failures such as 
drifts and offsets, we follow the same techniques as the 
ones presented in [5] for the outlier setup strategy 
(ANNODE), namely artificial neural networks 
(ANNs) and statistical techniques respectively used in 
the Prediction and Failure Detection blocks of the 
methodology. However, since there are notorious 
differences between spurious and systematic errors, 
these have implications on the strategies for Prediction 
and Failure Detection blocks. Indeed, the procedures 
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and techniques need to be customized specifically for 
failures that show a persistent behavior over a  
time interval. 

 
 

4.2. Systematic Failures 
 
Offset failures can be characterized by a period of 

time during which the measurements exhibit a given 
offset, constant or almost with no variance, with 
respect to the expected sensor readings. It is the 
behavior shown during a time interval that provides 
the systematic aspect, different from the spurious 
behavior of an outlier. On the drift failures, the drifting 
behaviors can be split into two categories related to 
their general pattern. A drift can be characterized by a 
smooth and slowly decay or growth, as in a linear or 
exponential function, represented in Fig. 2(a). The 
second category describes a drift also with a linear or 
exponential decay or growth but presenting 
discontinuities or sudden surges, abrupt changes or 
accentuated peaks, represented in Fig. 2(b). 

 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 2. Categories of Drifting failures:  
a) Sharp drifts; b) Smooth drifts. 

 
 

4.3. Prediction Block 
 
A solution for the detection and correction of 

offsets and drifts should follow three steps. First, in a 

sensor network there must be a selection of the 
network sensor nodes that are highly likely to be 
correlated. This correlation can be verified by 
considering either the physical distance or  
through expert knowledge of the specific  
environment dynamics. 

The second step is the selection of the data fusion 
techniques for the Prediction (P) block, considering 
that such techniques must be adequate to resolve the 
estimation problem (predicting the target sensor next 
measurement). Finally, the third step includes the 
selection of the specific datasets for the training 
process (if required) of the chosen techniques. 

We defined the type and structure of ANNs to use 
for the datasets of a case study [5], in which for 
monitoring measurements of a given target sensor, the 
inputs are comprised of the vectors with a history of 
measurements of the neighbor sensors and possibly of 
the target sensor itself. Regarding the layer structure, 
besides the input and output layers, the ANNs are 
composed also with two hidden layers. The ANNs 
output is trained to be a prediction of the target sensor 
next measurement (single value). 

In terms of the predictions provided by the ANNs 
(P block), there is a clear difference between outlier 
and systematic detection. For systematic failures 
detection prediction models based on the target past 
measurements are not considered.  

Consequently, we only consider ANNs trained 
based on the measurements of the neighbor sensors. 
Therefore, we discard past measurements from the 
target sensor because these have a strong influence in 
the predictions and could lead to wrong predictions.  

One important difference between systematic and 
spurious errors is that in the former, they are observed 
over time while the latter are observed in a single 
measurement. Therefore, systematic errors cannot be 
detected as soon as they start, only after being 
observed for a certain time interval. 

Another important aspect to consider for the 
specific situation of environment monitoring networks 
is that the sensors are widespread in space, which may 
diminish the prediction techniques accuracy. 
Moreover, without explicit sensor redundancy where 
we have at least two sensors in the same place 
(location), we are likely to have less accurate 
estimations for the target sensor measurement. 
Therefore, in order to obtain a more complete view of 
the monitoring system, we are required to have several 
correlated neighbor sensors. 
 
 
4.4. Failure Detection Block 

 
In the Failure Detection (FD) block, similarly to 

the outlier detection ANNODE solution [5], we 
consider a statistical technique as a comparison 
method, in order to calculate the differences between 
each measurement and the corresponding predictions 
provided by the Prediction block (P). This statistical 
technique uses a training dataset to learn the 
probability distributions fittings between the errors of 
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the prediction models defined in P and the expected 
measurements. Using the training dataset, the square 
errors between the measurement and each prediction 
are obtained and we are able to obtain the final 
cumulative density function (CDF). This CDF allows 
us to calculate the probability of the error between 
current target sensor reading and prediction. 
Therefore, by defining a threshold for error 
probability, we can assess the significance of the 
observed differences between the measurement and 
the predictions. 

In this solution for the detection of systematic 
errors, we have different detection conditions from 
those formulated in ANNODE. Firstly, each 
measurement of the target sensor is compared with the 
predictions. The number of significant differences, 
which can be between zero and total number of 
predictions, is then recorded. Afterwards, these 
differences are evaluated over a significant temporal 
window to perform the intended detection of 
systematic failure. 

For this systematic detection, a temporal window 
must be defined so we can distinguish single point 
situations from systematic failures or even from an 
environment-related event. These single point 
situations can be spurious errors or just regular 
fluctuations in the differences between the 
measurement and the corresponding predictions, in 
which the difference can be significant for that instant 
but not in a systematic manner. This temporal window 
will allow us to characterize correctly a systematic 
failure, either being an offset or a drift. 

The temporal window will have user-specified, 
pre-defined time units, which is typically defined by 
the application and related with the required failure 
detection latency. The rule of thumb is that the 
window must include enough measurements to 
characterize the temporal scales of relevance with 
enough resolution for the phenomena at stake, 
depending also on the frequency of sensor 
measurements. The number of measurements in the 
window must be at least 3, such that it is possible to 
conclude that a certain behavior is systematic, but it 
can be made larger as this will allow more  
precise conclusions.  
 
 
5. Conclusions 
 

We propose herein a new approach for drift and 
offset behaviors detection, specifically targeted for 
application in environmental sensor networks. The 
implementation is based on an instantiation of a past 
methodology [3], applicable to short- and long-term 
failures. The new methodology comprises relevant 
prediction models for the next measurement of the 
target sensor, using machine learning techniques 
based only on the neighbor’s information. The next 
steps will be to demonstrate it with real world data, in 
a complex environment setting. 

 
 

Acknowledgements 
 

This paper is part of the work of project 
AQUAMON (PTDC/CCI-COM/30142/2017), funded 
by the Fundação para a Ciência e a Tecnologia (FCT). 
 
 
References 
 
[1]. E. W. Dereszynski, T. G. Dietterich, Spatiotemporal 

models for data-anomaly detection in dynamic 
environmental monitoring campaigns, ACM 
Transactions on Sensor Networks (TOSN), Vol. 8, 
Issue 1, 2011, pp. 1-36. 

[2]. V. Garcia-Font, C. Garrigues, H. Rifà-Pous, A 
comparative study of anomaly detection techniques for 
smart city wireless sensor networks, Sensors, Vol. 16, 
Issue 6, 2016. 

[3]. M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki, 
P. J. Havinga, Distributed event detection in wireless 
sensor networks for disaster management, in 
Proceedings of the International Conference on 
Intelligent Networking and Collaborative Systems, 
2010, pp. 507-512. 

[4]. Y. Singh, S. Saha, U. Chugh, C. Gupta, Distributed 
event detection in wireless sensor networks for forest 
fires, in Proceedings of the UKSim 15th International 
Conference on Computer Modelling and Simulation, 
2013, pp. 634-639. 

[5]. G. Jesus, A. Oliveira, A. Casimiro, Using Machine 
Learning for Dependable Outlier Detection in 
Environmental Monitoring Systems, ACM 
Transactions on Cyber-Physical Systems, Vol. 5, 
Issue 3, 2021, pp. 1-30. 

[6]. K. Whitehouse, D. Culler, Calibration as parameter 
estimation in sensor networks, in Proceedings of the 
1st ACM International Workshop on Wireless Sensor 
Networks and Applications, 2002, pp. 59-67.  

[7]. J. C. Patra, P. K. Meher, G. Chakraborty, Development 
of Laguerre neural-network-based intelligent sensors 
for wireless sensor networks, IEEE Transactions on 
Instrumentation and Measurement, Vol. 60, Issue 3, 
2010, pp. 725-734.  

[8]. J. Rivera, M. Carrillo, M. Chacón, G. Herrera, G. 
Bojorquez, Self-calibration and optimal response in 
intelligent sensors design based on artificial neural 
networks, Sensors, Vol. 7 Issue 8, 2007, pp.1509-
1529. 

[9]. V. Bychkovskiy, S. Megerian, D. Estrin,  
M. Potkonjak, A collaborative approach to in-place 
sensor calibration. Information Processing in Sensor 
Networks, 2003, pp. 301-316. 

[10]. L. Balzano, R. Nowak, Blind calibration of sensor 
networks, in Proceedings of the 6th International 
Conference on Information Processing in Sensor 
Networks, 2007, pp. 79-88. 

[11]. J. Feng, S. Megerian, M. Potkonjak, Model-based 
calibration for sensor networks, IEEE Sensors, Vol. 2, 
Issue 2, 2003, pp. 737-742. 

[12]. R. Tan, G. Xing, X. Liu, J. Yao, Z. Yuan, Adaptive 
calibration for fusion-based cyber-physical systems, 
ACM Transactions on Embedded Computing Systems 
(TECS), Vol. 11, Issue 4, 2013, pp. 1-25. 

[13]. Y. Wang, A. Yang, Z. Li, X. Chen, P. Wang, H. Yang, 
Blind drift calibration of sensor networks using sparse 
Bayesian learning, IEEE Sensors Journal, Vol. 16, 
Issue 16, 2016, pp. 6249-6260. 



Sensors & Transducers, Vol. 252, Issue 5, October 2021, pp. 28-34 

 34

[14]. E. U. Warriach, M. Aiello, K. Tei, A machine learning 
approach for identifying and classifying faults in 
wireless sensor network, in Proceedings of the IEEE 
15th International Conference on Computational 
Science and Engineering, 2012, pp. 618-625. 

[15]. M. Takruri, S. Challa, Drift aware wireless sensor 
networks, in Proceedings of the 10th International 
Conference on Information Fusion, 2007, pp. 1-7. 

[16]. M. Takruri, S. Rajasegarar, S. Challa, C. Leckie,  
M. Palaniswami, Online drift correction in wireless 
sensor networks using spatio-temporal modeling, in 
Proceedings of the IEEE 11th International 
Conference on Information Fusion, 2008, pp. 1-8. 

[17]. M. Takruri, K. Aboura, S. Challa, Distributed 
recursive algorithm for auto calibration in drift aware 
wireless sensor networks, Innovations and Advanced 
Techniques in Systems, Computing Sciences and 
Software Engineering, 2008, pp. 21-25. 

[18]. M. Takruri, S. Challa, R. Chakravorty, Auto 
calibration in drift aware wireless sensor networks 
using the interacting multiple model algorithm, in 
Proceedings of the IEEE Mosharaka International 
Conference on Communications, Computers and 
Applications, 2008, pp. 98-103. 

[19]. M. Takruri, S. Challa, R. Yunis, Data fusion 
techniques for auto calibration in wireless sensor 
networks, in Proceedings of the IEEE 12th 
International Conference on Information Fusion, 
2009, pp. 132-139. 

[20]. M. Takruri, S. Challa, R. Chakravorty, Recursive 
bayesian approaches for auto calibration in drift aware 
wireless sensor networks, Journal of Networks, Vol. 5, 
Issue 7, 2010, pp. 823-832. 

[21]. M. Takruri, S. Challa, Data Fusion Approach for Error 
Correction in Wireless Sensor Networks, Wireless 

Sensor Networks: Application-Centric Design, 2010, 
353. 

[22]. D. Kumar, S. Rajasegarar, M. Palaniswami, Automatic 
sensor drift detection and correction using spatial 
kriging and Kalman filtering, in Proceedings of the 
IEEE International Conference on Distributed 
Computing in Sensor Systems, 2013, pp. 183-190. 

[23]. D. Kumar, S. Rajasegarar, M. Palaniswami, 
Geospatial estimation-based auto drift correction in 
wireless sensor networks, ACM Transactions on 
Sensor Networks (TOSN), Vol. 11, Issue 3, 2015, 
pp. 1-39. 

[24]. P. Rathore, D. Kumar, S. Rajasegarar, M. 
Palaniswami, Bayesian maximum entropy and 
interacting multiple model based automatic sensor 
drift detection and correction in an IoT environment, 
in Proceedings of the IEEE 4th World Forum on 
Internet of Things (WF-IoT), 2018, pp. 598-603. 

[25]. Y. Xie, X. Chen, J. Zhao, Data fault detection for 
wireless sensor networks using multi-scale PCA 
method, in Proceedings of the 2nd International 
Conference on Artificial Intelligence, Management 
Science and Electronic Commerce (AIMSEC), 2011, 
pp. 7035-7038. 

[26]. N. Peng, W. Zhang, H. Ling, Y. Zhang, L. Zheng, 
Fault-tolerant anomaly detection method in wireless 
sensor networks, Information, Vol. 9, Issue 9, 2018, 
pp. 236. 

[27]. G. Jesus, A. Oliveira, A. Casimiro, Detecting Drifts 
and Offsets in Environmental Monitoring Networks, 
in Proceedings of the 7th International Conference on 
Sensors and Electronic Instrumentation Advances 
(SEIA’2021), Palma de Mallorca, Spain, 2021,  
pp. 97-101. 

 
__________________ 

 

 

Published by International Frequency Sensor Association (IFSA) Publishing, S. L., 2021 
(http://www.sensorsportal.com). 

 
 

 
 

 

https://www.sensorsportal.com/HTML/IFSA_Publishing.htm

