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1. INTRODUCTION 

Ground settlements caused by the excavation of 
tunnels may be particularly relevant in urban areas, 
with greater relevance in soft soils. Estimating the 
amplitude of the settlements and the associated 
risk of damage to buildings is an essential part of 
tunnel planning, design and construction. Empirical, 
analytical and numerical models, with judiciously 
chosen parameters, are currently used. However, 
the local (statistical) variability and the spatial vari-
ability are not generally considered. The quality of 
the settlement estimates depends on the amplitude 
of both types of variability, among other factors. 
The quantification of ground variability and its con-
sideration on the surface settlements estimation 
improves its robustness. This is an important issue 
regarding the forecasts for the definition of warning 
and alarm limits for risk management during tunnel 
construction. 
 

2. SURFACE SETTLEMENTS DUE TO 
TUNNEL EXCAVATION 

2.1 Geometry of subsidence 

As outlined by Mair and Taylor (1997) ground 
movements due to TBM tunneling may have differ-
ent origins, namely: (i) extrusion of the ground at 
the face, (ii) radial motion towards the shield, due to 
over excavation of soil, (iii) convergence at the tail 
of the TBM (usually the most influential), (iv) con-
vergence due to the deformation of the liner, and (v) 
radial deformation in soft soils due to time lagged 
effects. As far as NATM tunneling is concerned, 
movements can be assigned to: i) ground extrusion 
at the face, (ii) radial convergence of the lining and, 
(iii) of the ground due to ground consolidation. 
 
The geometry of the subsidence basin and the 
amplitude of surface settlements caused by 
underground excavation can be estimated with a 
reasonable degree of confidence for the green field 
situation. Empirical correlations based on field 
observations are currently used for this estimation. 
 

In practice, however, movement patterns may be 
affected by structures. If their influence is significant, 
one will have to resort to numerical methods which 
take into account three-dimensional effects and 
structural models, even if these are simple models. 
In Figure 1 the geometry of the subsidence basin is 
outlined, with a reference system xyz in which x 
and z are the orthogonal axes in the transverse 
plane of the face and y is the longitudinal axis, The 
vertical displacement is designated by Sv and the 
horizontal displacements in the transverse and 
longitudinal directions, by Shx and Shy. 

 
Figure 1 – Geometry of the subsidence basin 
(adapted from Franzius, 2003) 
 
According to Schmidt (1969) and Peck (1969), the 
cross-sectional area of subsidence at the surface 
can be described by a Gaussian error function: 
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where Sv,max is the peak settlement over the tunnel 
axis. The parameter ix stands for the distance be-
tween the plane of symmetry of the tunnel and the 
inflexion points of the theoretical subsidence curve 
(see Figure 2). 
 
The volume of surface subsidence per unit length of 
the tunnel is obtained by integrating equation [1]: 

máxvSxi2dxxvSSV ,)( π=
+∞

∞−
=∫  [2] 

 



 2 

 
Figure 2 – Transverse subsidence curve: settlements, horizontal displacements and horizontal extension 
(Franzius, 2003). 

The difference between this volume and the so 
called lost volume towards the tunnel perimeter 

LV reflects the occurrence of dilatancy in the 

ground. They may be assumed as equal in 
undrained conditions. Combining the unit volume of 
subsidence sv (ratio of SV to the theoretical cross-

sectional area of the tunnel) with xi , it is possible 
to express the settlement in a generic position x as 
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2.2 Modelling with analytical expressions  

The use of elastoplastic models for modelling the 
subsidence pattern, either analytical or numerical, 
is strictly required by the non-linearity and partial 
irreversibility of deformation that characterizes the 
mechanical response of the ground. At sufficiently 
distant positions from the excavation, however, the 
use of elastic models based on an estimate of the 
ground loss may be appropriate. Several models 
may be found in the literature such as the one by 
Sagaseta (1987), for ground loss estimate due to 
tunnel construction (valid for a constant volume 
condition), which was later extended by Verruijt and 
Booker (1996) to allow the use of an arbitrary value 
of the Poisson’s ratio. In this extended solution the 
joint effects of radial contraction and ovalization of 
the tunnel are considered. 
 
Loganathan and Poulos (1998) further developed 
the solution by Verruijt and Booker and defined an 
equivalent parameter eqε , related to the pure con-

traction of the tunnel, based on the gap parameter 
introduced by Rowe and Knack (1983). According 
to Lee et al. (1992), this parameter results from the 
combined effects of three-dimensional elastoplastic 
deformations at the tunnel face ( D3U ), from the soil 

over-excavation ( ω ) and also from the gap due to 
the conical shape of the tunneling machine ( pG ): 

ω++= D3UpGg  [4] 

The gap pG is the sum of twice the thickness of the 

TBM tail ( ∆ ) with the initial gap between the ground 

and the tail ( ζ ), i.e. ζ+∆= 2pG . The gap can be 

reduced to a negligible dimension if contact grout-
ing is used. However, given the shrinkage of the 
grout, it is generally assumed that a residual value 
of 7 to 10% of the initial gap still remains. Shrinkage 
is considered to develop in undrained conditions, 
since it occurs in a short period of time. The pa-
rameter D3U  is defined as 
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where k  is a soil-cutter resistance factor, ranging 
from 0.7 to 0.9 for stiff to soft clays and being equal 
to 1 for very soft clays (Lee et al., 1992). xδ  stands 

for half of the convergence at the tunnel face 

E
0R

x
σΩ

=δ  [6] 

where Ω  is a dimensionless displacement related 
factor, R  is the tunnel radius, E  is the deformability 
modulus of the soil (typically, the undrained modu-
lus in extension uE ) and iwv0K0 σ−σ+σ=σ ' . In this 

expression 0K  is effective coefficient of earth 

pressure at rest, v'σ  is the vertical effective stress 

due to the overburden, wσ  is the pore-water 
pressure at the spring line of the tunnel and iσ  is 

the tunnel support pressure at the face. 
 
Finally, the parameter ω is related to the over-
excavation caused by the bead. It is equal to *ω  if 
there is no bead or to the sum of *ω with the 
thickness or twice the thickness of the bead, 
whether the bead spans 180º of the hood or covers 
the full circumference, respectively. 
The smallest of pG6.0  and 3iU / is chosen and 

deignated as *ω , where iU  is the radial plane 

strain displacement of the ground, defined as:  
21

1Ne
uE

uSu12
11

R
iU

/
)(

−







 −ν+
+−=  

[7] 

in which uE  e uν  are respectively the undrained 

deformability modulus and Poisson’s ratio, us  is 

the undrained strength and N is the stability number. 
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The parameter eqε  incorporates in its definition the 

nonlinear ground movement due to the tunnel 
ovalization. It is defined as  
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The undrained surface settlement is equal to 
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3. ASSESSMENT OF THE GROUND 
GEOTECHNICAL PROPERTIES VAR-
IABILITY 

The variability of the soil is caused by the natural 
geological processes that modify the ground. It can 
be observed locally – statistical variability – or con-
sidering the values in several positions – spatial 
variability. 

3.1 Statistical characterization of the ge-
otechnical parameters 

3.1.1 Statistical measures of position, local 
dispersion and spatial correlation 

The spatial variability of the ground can be mod-
elled taking into account two contributions: a known 
deterministic trend and a residual variability about 
that trend, which characterizes the inherent variabil-
ity of the soil deposit. For the one-dimensional 
model case, the local value of the property )(xz  can 
be represented by: 

)()()( xuxtxz +=  [10] 
in which )(xt  is the value of the statistical trend at 
x  and )(xu  is the residual variation, suppletive to 
the tendency. The residuals u are characterized 
statistically as a random variable, with zero mean, 
and variance: 

{ }[ ]2xtxzEuVar )()()( −=  [11] 

The variance of the residuals reflects the 
uncertainty about the difference between the 
interpolation trend and the actual value of soil 
properties. 
 
The remaining spatial structure, after removing the 
trend, shows the existence of correlation among the 
residuals, ie, the residuals aren’t statiscally 
independent. The positive residuals tend to group, 
as well as the negative ones. This spatial structure 
of variation, unconsidered by the trend, may be 
described by the spatial correlation, usually called 
autocorrelation, which decreases with the distance 
between positions. The strenght and the signal of 
the correlation between two scalar variables 1z  and 

2z  are measured by the correlation coefficient 

),( 21 zzρ . The two variables might represent 

different but related properties or the same property 
in distinct locations. In the latter case, in which the 
covariance and the correlation depend on the 

separation distance, they are designated by 
autocovariance and autocorrelation, respectively.  
 
The correlation coefficient ρ  is equal to one for 

zero separation distance and tends assimptotically 
to zero for increasing separation distances. 
Therefore, the spatial variability about a trend is 
due to the variance (local effect) and to the 
autocorrelation (spatial effect). 
 
The spatial association of residuals may be 
summarized by the autocorrelation function ( )δzR , 

which describes the correlation of )( ixu  and )( jxu  as 

separation distance δ  increases: 
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in which ( )[ ]xuVar  is the variance of the residuals 
and ( )δzC  is the autocovariance function of the 

residuals spaced at distance δ . In practice, simpli-
ficative hypotheses are assumed about the autocor-
relation, namely in what concerns isotropy and 
stationarity, which is equivalent to considering the 
deposit statistically homogeneous. 
 
For the purposes of modeling and analysis, it is 
usually convenient to choose infinitely differentiable 
functions to represent ( )δzR . Functions commonly 

used to represent autocorrelation are shown in 
Table 1, in which 0δ  is a constant having units of 

length. These functions are graphically presented in 
Figure 3. 
 
Table 1 – One-dimensional models of autocorrela-
tion (adapted from Baecher and Christian, 2003) 

Model Equation 

White noise (R1) ( )


 =δ

=δ
otherwise0

01
Rz

,

,
 

Linear (R2) ( )


 δ≤δδδ−

=δ
otherwise0

1
R 00

z
,

,/
 

Exponential (R3) ( ) ( )0z /expR δδ−=δ  

Squared exponential 
(R4) 

( ) ( )( )2
0z /expR δδ−=δ

 
In order to integrate spatial variability in models of 
superficial settlements caused by tunnel excavation, 
it is necessary to resort to the random field theory, 
considering that the generic variable )(xz  (e.g., the 
deformability modulus) is a realization of a random 
field. A random field is defined by the joint probabil-
ity distribution, which describes the variation of z  
within the space xS : 

( ) ( ) ( ){ }nn11n1nx1x zxzzxzPzzF ≤≤= ,...,,...,,...,  [13] 

Should the random field be assumed second-order 
stationary and isotropic the autocovariance function 
depends only on the distance ji xx −=δ  between 

the points. The functions ( )δzR  and ( )δzC  become 
even and limited, i.e., respectively 

( ) ( ) ( ) ( )δ−=δδ−=δ zzzz RRCC ;   and  [14] 
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( ) ( ) ( ) 1R0CC z
2

zz ≤δσ=≤δ ;  
A random field that doesn’t meet the stationarity 
conditions is said to be non-stationary, i.e., it is 
statistically heterogeneous. Stationarity usually 
depends upon scale. Within a small region, such as 
a building foundation, soil properties may behave 
as if drawn from a stationary process; whereas, that 
may not happen over a larger region. Another 
property that is used to characterize a random field 
is ergodicity. Basically, ergodicity means that the 
probabilistic properties of a random process (field) 
can be completely estimated from observing one 
realization of that process; it implies strict stationari-
ty. 
 
Let us then consider the stochastic scalar field )(xz , 
with the usual properties assumed in the random 
field theory: homogeneity, isotropy, ergodicity and 
stationarity. Its parameters are, thus, the mean zµ , 

assumed constant, the variance 2
zσ  and the auto-

covariance function ( )δzC (Baecher and Christian, 

2003). 
 
The average process in a reference length X  is an 
essential resource in geotechnical modelling, 
allowing to define “homogeneous” sub-domains. As 
a matter of fact, the vast majority of the considered 
information on geotechnical parameters in any site 
is defined over a finite domain and represents a 
local average of the parameter, instead of its exact 
local value. The spatial average of the process 
within the interval [ ]X0,  is: 

∫=

X
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X dxxz
X
1
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The spatial averaging process smoothes the stud-
ied variables. In fact, the variance of the averaged 
process is smaller and its spatial correlation is 
wider than the original process )(xz . The 
corresponding moments of the spatial mean of 
order 1 and 2 can be determined from the mean 
and variance of the scalar process )(xz : 
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The autocovariance of the average process is given 
by: 

( ) ( ) ji
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The reduction in variance due to the averaging may 
be represented by a variance reduction func-
tion )(X2

zΓ that depends on the autocorrelation func-

tion ( )δzR  and the width of the observation 
window X : 
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The scale of fluctuation or (effective) correlation 
distance zθ  of the process )(xz  represents the 
distance above which the function ( )δzR  takes 

values lower than 2e1/ , i.e. where no significant 
correlation exists. According to Vanmarcke (1984) 
the scale of fluctuation can be estimated by: 

)X(Xlim 2
zXz Γ=θ →∞  [20] 

That is, Xz /θ  is the infinite asymptote of )(X2
zΓ , 

meaning that 0Rz →δ)(  when ∞→δ . In this case, 

zθ  can be found through: 
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For the models which autocorrelation function was 
described in Table 1, the variance reduction func-
tions and the corresponding scales of fluctuation 
are presented in Table 2. These functions are 
graphically presented in Figure 3. 
 

Table 2 – Variance reduction functions for one-
dimensional models of autocorrelation (adapted 

from Baecher and Christian, 2003) 

Model Variance reduction function zθ  

White noi-
se ( Γ 1) 

( )


 =

=Γ
otherwise0

0X1
X2

z
,

,
 0 

Linear 
( Γ 2) 

( ) ( )( )



δ−δ
δ≤δ−

=Γ
.,//

,/

oX31X

X3X1
X

00

002
z  0δ  

Exponenti-
al ( Γ 3) 






















δ
−+−

δ





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δ=Γ
00

2
02

z
X

exp1
X

X
2)X(  02δ  

Square 
exponential 

( Γ 4) 






































δ
−+−









δδ
π







δ=Γ
2

000

2
02

z
X

exp1
X

erf
X

X
)X(

in which erf is the error func-
tion 

0δπ
 

3.1.2 Literature values of statistical measures 

The observations of the ground parameters suggest 
a considerable variability, not only from zone to 
zone, but also inside each presumed homogeneous 
deposit. The variability of the ground, modelled 
using the random field theory, can be described 
with the coefficient of variation ( zCOV ) and the fluc-

tuation scale zθ . 

 
The spatial variability pattern is related with the 
specific regional geology of a certain zone. Thus, 
the ground variability data set shall always be local-
ly gathered. Still, published values of variation in-
terval of COV for geotechnical variables may be 
useful as an introductory guidance (see Table 3). 
Caution must be taken, however, for these values 
are likely overestimated for the following reasons: (i) 
the joint consideration of contrasting geological 
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units in the same sample; (ii) measuring errors, (iii) 
diversity of equipments and interpretation methods 
and (iv) presence of deterministic trends. 
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Figure 3 – One-dimensional autocorrelation mod-
els and corresponding variance reduction func-

tions 
 
Based on the limited data available, Phoon and 
Kulhway (1999) concluded that the ratio of the hori-
zontal scale of fluctuation to the vertical one is 
close to 10, thus confirming the relative greater 
importance of the latter. The authors suggest that 
typical values for the horizontal scale vary between 
40 m and 60 m. The variability of φ  and ψ  is inti-
mately connected, given the physical relation be-
tween both angles. 
 

Table 3 – Variance reduction functions for one-
dimensional autocorrelation models 

Para-
meter Reference 

Variation 
interval 

Mean 
value  

COV varia-
tion interval 

(%) 

COV 
mean 
value 
(%) 

sandφ  

Lee et al. (1983) - - [5,15] 10 
Phoon & Kulhawy 

(1999) [35º,41º] 37.6º [5,11] 9 

clayφ  

Lee et al. (1983) - - [12,56] - 
Phoon & Kulhawy 

(1999) [9º,33º] 15.3º [10,50] 21 

Phoon & Kulhawy 
(1999) [17º,41º] 33.3º [4,12] 9 

clay,uS  

Lee et al. (1983) - - [20,50] 30 
Phoon & Kulhawy 

(1999)* [15,363] kPa 276 kPa [11,49] 22 

Phoon & Kulhawy 
(1999)** [130,713] kPa 405 kPa [18,42] 32 

sand,uS  Lumb (1974) - - [25,30] 30 

ρ  Lee et al. (1983) - - [1,10] 3 

γ  Phoon & Kulhawy 
(1999) [14,20] kN/m3 17.5 

kN/m3 [3,20] 9 

dγ  Phoon & Kulhawy 
(1999) [13,18] kN/m3 15.7 

kN/m3 
[2,13] 7 

E  Lee et al. (1983) - - [2,42] 30 
sand
lp  

Phoon & Kulhawy 
(1999) 

[1617,3566] 
kPa 2284 kPa [23,50] 40 

clay
lp  

Phoon & Kulhawy 
(1999) 

[428,2779] 
kPa 1084 kPa [10,32] 15 

PMTE  Phoon & Kulhawy 
(1999) 

[5.2,15.6] 
MPa 

8.97 MPa [28,68] 42 

* Unconsolidated undrained test; ** Consolidated undrained test 

3.2 Production of simulations via the fast 
Fourier transform method (FFT)  

A local Gaussian variability model with negative 
exponential spatial correlation was adopted with the 
purpose of evaluating the relevance of the ground 
parameters’ heterogeneity on the settlements 
caused by tunnel excavation. Thus, a scalar Gauss-
ian stochastic field )(xz  with zero mean, unit vari-
ance and scale of fluctuation zθ  was considered. A 

hundred )(xz  realizations were generated, from 
which the field )x(E  was obtained, by translating 
the mean and scaling the standard deviation: 

)COV)x(z1()x(E EE +µ=  [22] 

where Eµ  and ECOV  represent the mean and the 

coeficient of variation of )x(E . The field )x(φ  was 

obtained from the same realizations )(xz . 
 
In order to generate the realizations )(xz  four 
methods could have been used: the turning bands 
method, the local average subdivision simulation 
(LAS), the fast Fourier transform method and a 
technique based on the lower-upper (LU) triangular 
decomposition of the covariance matrix (Davis, 
1987). We opted for the fast Fourier transform 
method mainly because it is computationally effi-
cient and, being a numerical technique, it can be 
applied for any given covariance model. Further-
more, the turning bands method could create un-
wanted anisotropies when a strong anisotropy is 
present in the geometry of the deposit and the 
method that considers the LU decomposition of the 
covariance is only computationally efficient for small 
grids (up to about 700 points). 
 
The fast Fourier transform method calculates the 
energy spectrum of the random function from the 
covariance model and produces a simulation with 
the appropriate covariance structure in the space 
domain, by using the fact that the sum of independ-
ent multinormally distributed variables is also multi-
normal. 
 
Any sequence of N  values )(xz  can be expressed 

as a finite series of Fourier coefficients, ja  and jb : 

[ ]∑
−

=

π+π=
1N

oj
jj Njx2senbNjx2axz )/()/cos()(             

for x = 0,…,N-1 

[23] 

Using a complex exponential Fourier series it can 
equivalently be expressed as: 

Nxj2i
1N

oj
j

1 eAjAFxz /))(()( π
−

=

− ∑==  [24] 
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)()( ji
jjj ejAibaA ϕ−=−=  is the jth complex Fourier 

coefficient. Its amplitude is 2
j

2
j bajA +=)(  and its 

phase is given by )/(tan)( jj
1 abj −=ϕ − . 

The amplitudes )( jA  are related to the discrete 

spectral density )( js  or Fourier transform of the Z-
covariance by the relation: 

)()( jsjA
2 =  for j = 0,…,N-1 [25] 

The phase )( jϕ  can be taken as random normally 
distributed between 0 and 2π, as it doesn’t affect 
the covariance of the series )(xz  (Yao, 1998).  
The inverse Fourier transform of the complex coef-
ficients )( jA  provides the discrete finite realization 

)(xz  (x = 0,…, N-1) with the specified covariance 
spectrum )j(s . This inverse discrete Fourier 
transform can be efficiently computed with the fast 
Fourier transform. 
 

4. STATISTICAL VARIABILITY OF SET-
TLEMENTS BASED IN A NUMERICAL 
MODEL 

4.1 Properties of the numerical model 

A numerical example was developed to analyze the 
influence of the ground spatial variability on the 
deformation around a tunnel opening and on the 
surface settlements. These variables play a key 
role in risk management during tunnel construction 
since alarm and alert behaviour limits are usually 
expressed in terms of settlement and convergence 
values. Ground variability effects on settlements 
have been shown to be more expressive in shallow 
tunnels (Miranda and Bilé Serra, 2010). 
 
A numerical model of a shallow tunnel excavated in 
a ground with stationary properties was considered 
in FLAC 6.0. The ground is 50 m deep overlying a 
stiff overconsolidated layer. The tunnel diameter is 
10 m and the overburden is equal to 15 m. The 
width of the model is 130 m to prevent the bounda-
ry conditions’ effect on the tunnel response. Moreo-
ver, the distance of the tunnel center to the bottom 
boundary is three times the diameter. 
A Mohr-Coulomb model was selected to simulate 
the behaviour of the ground (a stiff clay), with a 
cohesion of 10 KPa. This model takes in considera-
tion the plastification of the ground around the tun-
nel, which has some influence on the surface set-
tlements. Concerning the deformability modulus, 
the values considered for Eµ  and ECOV  were 

50 MPa and 20%. In what regards the friction angle, 
the values assigned to φµ  and φCOV were 28º and 

15%. 
The realizations )(xz  are generated using a 
MATLAB application. A mesh of 130x50 square 
elements is defined for the generation of the 
random field. In what concerns the scale of 
flutuation, two cases were considered: 4 m and 6 m 
in the vertical direction and 40 m in the horizontal 

direction, in accordance to 3.1.3. MATLAB is the 
leader of the calculation cycle. For each realization 
of the field z, as described above, a realization of E 
and φ is defined and a system call of FLAC is is-
sued. Statistical analysis of the data, stored in 
MATLAB arrays, is then performed. 
 
In Figure 4, the values of the deformability modulus 
as well as the friction angle are represented for 
realization #53, for zθ = 4 m and, in Figure 5, for 

zθ = 6 m. A greater spatial correlation and conse-
quently less variability of the ground parameters 
with depth is observed in Figure 5. 

 

 
 

Figure 4 – Deformability modulus and friction angle 
for realization 53 – zθ = 4 m 

 

 

 
Figure 5 - Deformability modulus and friction angle 

for realization 53 - zθ = 6 m 

4.2 Analysis of the results 

The construction sequence was simulated by the 
convergence confinement method, with two major 
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stages: initial equilibrium and full face excavation 
and partial relaxation at the tunnel periphery, until 
the support is installed. In order to simulate relaxa-
tion, tractions were applied at the tunnel boundary 
to provide equilibrium at zero relaxation. A relaxa-
tion coefficient of 65% was considered to model 
adequately the behaviour of the ground before sup-
port installation. 
The output results under analysis are: (i) surface 
settlements, (ii) a settlement vertical profile from the 
tunnel crown to the surface and (iii) a convergence 
profile on the side of the tunnel with an inclination of 
45º. 
 
Preceding the one hundred calculations for the 
random fields, three reference homogeneous mod-
els were analyzed, with constant values of E and 'φ : 
the first with average values, the second with aver-
age minus one standard deviation values and the 
last with average plus one standard deviation val-
ues. The above mentioned results are presented in 
Figure 9, Figure 10 and Figure 11. The peak 
settlement varies between 7 mm and 21 mm, the 
crown settlement is between 25 mm and 52 mm, 
and the 45º half convergence lies between 24 mm 
and 51 mm. A larger influence of the negative 
biased parameters (red curves) is observed. 
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Figure 6 – Surface settlement profile  
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Figure 7 – Vertical displacement profile  
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Figure 8 – 45º displacement profile 

 
 
 
 
 
 
 

The results for the one hundred realizations are 
presented in Figure 9, Figure 10 and Figure 11, 
respectively, for a vertical scale of fluctuation of 4 m 
and in Figure 12, Figure 13 and Figure 14, for a 
vertical scale of fluctuation of 6 m. 

 
Figure 9 – Surface settlement profile – zθ = 4 m 

 

 
Figure 10 – Vertical displacement profile – zθ = 4 m 
 

 
Figure 11 – 45º convergence profile – zθ = 4 m 

 
The upper 5 % fractile of maximum vertical surface 
settlement, maximum vertical displacement and 
maximum 45º displacement corresponds to a value 
of 2.2 cm, 5.1 cm and 5.3 cm, respectively, for a 
scale of fluctuation of 4 m. This can be better un-
derstood by analyzing the histograms and cumula-
tive frequency curves in Figure 15, Figure 16 and 
Figure 17. 
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Figure 12 – Surface settlement profile – zθ = 6 m 

 

 
Figure 13 – Vertical displacement profile – zθ = 6 m 
 

 
Figure 14 – 45º convergence profile – zθ = 6 m 

 

 
Figure 15 – Histogram and cumulative frequency 

curve of the maximum surface settlement - zθ = 4 m 

  

 
Figure 16 – Histogram and cumulative frequency 

curve of vertical displacement at the crown -

zθ = 4 m 
 

 
Figure 17 – Histogram and cumulative frequency 

curve of the maximum 45º convergence - zθ = 4 m 

 
For the zθ = 6 m case, the upper 5 % fractile of 

maximum vertical surface settlement, maximum 
vertical displacement and maximum 45º 
displacement corresponds to a value of 2.3 cm, 
5.3 cm and 5.1 cm, respectively. The histograms 
and cumulative frequency curves are shown in 
Figure 18, Figure 19 and Figure 20. 

 
Figure 18 – Histogram and cumulative frequency 

curve of the maximum surface settlement- zθ =6 m 
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Figure 19 – Histogram and cumulative frequency 
curve of the vertical displacement at the crown - 

zθ = 6 m 
 

 
Figure 20 – Histogram and cumulative frequency 
curve of the maximum 45º convergence - zθ = 6 m 
 

 
Figure 21 – Statistical curves for the surface set-

tlement – zθ = 4 m 
 

 
Figure 22 – Statistical curves for the vertical dis-

placement – zθ = 4 m 
 

 
Figure 23 – Statistical curves for the 45º dis-

placement – zθ = 4 m 

 
A significative scatter was obtained in both cases 
for the settlement curve at the surface, the 
settlement profile from the tunnel crown to the sur-
face and the oblique convergence profile. Should 
the properties’ scatter be taken as representative of 
a current profile with a low density of geotechnical 
data (due to paucity of in situ tests), it must be 
considered when defining the alarm and alert limits 
for the tunnel excavation. As a matter of fact, in the 

zθ = 4 m the convergence varies between 44 mm 
(0.5%D) and 146 mm (1.5%D), the crown 
setllement varies between 23 mm and 76 mm and 
the peak surface settlement is between 5 and 32 
mm. 

 
Figure 24 – Statistical curves for the surface set-

tlement – zθ = 6 m 
 

 
Figure 25 – Statistical curves for the vertical dis-

placement – zθ = 6 m 
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Figure 26 – Statistical curves for the 45º dis-

placement – zθ = 6 m 
 

5. FINAL CONSIDERATIONS 

The present communication addressed the issue of 
surface settlement caused by tunnelling, given the 
local and spatial statistical variability of the ground 
geotechnical parameters.  
In what concerns the local variability, it’s essential 
to use analytical expressions for generating realiza-
tions of subsidence basins. Thus, the empirical 
expressions most used to calculate the surface 
settlements are described and a reference is made 
to the statistical functions with greater relevance to 
this problem. 
Regarding the spatial variability, the random field 
theory, associated with the fast Fourier transform 
method was used to generate realizations of the 
modulus of deformability and the friction angle of 
the ground. Two cases were considered for the 
vertical fluctuation scale – 4 m and 6 m – based in 
literature values. The influence of both the referred 
parameters on the ground variability with spatial 
correlation was then analyzed with regard to the 
surface settlement, the vertical displacement in a 
profile linking the top of the tunnel to the surface 
and the displacements in a profile at 45 degrees 
with the horizontal axis of the model. 
The adopted methodology allows the establishment 
of characteristic values – upper fractiles – which are 
useful in defining the criteria for risk management 
during tunnel construction, when no rupture of the 
excavation occurs. 
 

6. REFERENCES 

Baecher, G. B., Christian, J. T. (2003). Reliability 
and statistics in geotechnical engineering. John 
Wiley & Sons, Inc., New Jersey, USA. 
Davis, Michael W. (1987). Production of Conditional 
Simulations via the LU Triangular Decomposition of 
the Covariance Matrix. Mathematical Geology, Vol. 
19, No.2, 91-98. 
Franzius (2003). Behaviour of buildings due to tun-
nel induced subsidence. Ph. D. Thesis, Department 
of Civil and Environmental Engineering, Imperial 
College of Science, Technology and Medicine, 
London. 
Lee, K. M., Rowe, R. K., Lo, K. Y. (1992). Subsid-
ence owing to tunnelling. I: Estimating the gap pa-

rameter. Can. Geotech. J., Ottawa, Canada, 29, pp. 
929-940. 
Loganathan, N., Poulos, H. G. (1998). Analytical 
prediction for tunneling-induced ground movements 
in clays. Journal of Geotechnical and Geoenviron-
mental Engineering, Vol. 124, No. 9. pp. 846-856. 
Lumb, P. (1974). Application of statistics in soil 
mechanics. Soil Mechanics: New Horizons. Lee, I. 
K., ed., London, Newnes-Butterworth, 44–112, 
221–239. 
Mair, R. J., Taylor, R. N. (1997). Bored tunneling in 
the urban environment. Proceedings of the 14th 
International Conference on Soil Mechanics and 
Foundation Engineering, Hamburg. pp. 2353-2385. 
Balkema, Rotterdam. 
Miranda, L., Serra, J. Bilé (2010). A influência da 
variabilidade estatística das propriedades do terre-
no nas estimativas de assentamentos causados 
pela escavação de túneis. ENESU 2010, Lisboa. 
Peck, R. B. (1969). Deep excavations and tunneling 
in soft ground. Proceedings of the 7th int. Confer-
ence on Soil Mechanics and Foundation Engineer-
ing. State of the art volume. Pp 225-290. Sociedad 
Mexican de Mecanica de Suelos, A. C. 
Phoon, K-K., Kulhawy, F. H (1999). Characteriza-
tion of geotechnical variability. Canadian Ge-
otecnhnical Journal, 36, pp. 612-624. 
Rowe, R. K., Knack, G. J. (1983). A theoretical 
examination of the settlements induced by tunnel-
ling: Four case histories. Can. Geotech. J., Ottawa, 
Canada, 20, pp. 299-314. 
Sagaseta, C. (1987). Analysis of undrained soil 
deformation due to ground loss. Géotechnique 37, 
No. 3, pp. 301-320. 
Schmidt, B. (1969). Settlements and ground 
movements associated with tunnelling in soil. Ph. D. 
Thesis, University of Illinois. 
Vanmarcke, E. (1984). Random Fields: Analysis 
and Synthesis. MIT Press, Cambridge. MA. 
Verruijt, A., Booker, J. R. (1996). Surface settle-
ments due to deformation of a tunnel in an elastic 
half plane. Géotechnique 46, No. 4, pp. 753-756. 
Yao, Tingting (1998). Conditional Spectral Simula-
tion with Phase Identification. Mathematical Geolo-
gy, Vol. 30, No. 3, 285-308. 


