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DEVELOPMENT OF GDAMS2D 1.0 

A MATLAB code for structural analysis of gravity dams using Lagrangian finite elements with 
9 nodes 

Abstract 

In this work we present the version 1.0 of the GDams2D 1.0 program developed for 2D analysis of 

gravity dams using the finite element method. This initial version of the program is prepared to analyze 

the structural behavior of gravity dams for static loads, considering linear-elastic behavior, and using 

Lagrange finite elements of 4 sides, with 9 nodal points. The GDams2D 1.0 program, developed in 

MATLAB, includes a module for automatic generation of meshes with a great level of refinement 

(generated from coarse meshes of quadrilaterals, with 4 nodal points at the vertices) and is designed 

for easy adaptation to non-linear analyzes, using stress-transfer modules such as those recently 

developed for the DamSlide3D and DamDamage3D programs. 

After a brief reference to the fundamentals of solid mechanics and to the simplified hypotheses of 

plane elasticity, the Fundamentals of the Finite Element Method (FEM) are presented, referring in 

particular the formulation of the four-node, linear and isoparametric, finite element (FE4nos), with two 

translation d.o.f per node, and the quadrangular FEs of 9 nodes (FE9nos) used in GDams2D 1.0. 

Based on some examples of application to simple 2D structures whose response is known 

analytically, the advantages of FEs are emphasized in relation to FE4nos and the verification and 

operability of GDams2D 1.0 is made using various discretizations. 

Finally, the case of a gravity dam (25 m high) is presented. The dam’s structural behavior for the main 

loads, self-weight and hydrostatic pressure, is simulated with GDams2D 1.0. The results obtained are 

analyzed based on the post-processing module of GDams2D 1.0, also developed in MATLAB in the 

scope of the present work. This module allows several types of representation of the displacement 

field and stress field.  

Keywords: Gravity dams / Linear-elastic behavior / FEM convergence / 2D Lagrangian finite 

elements / p-refinement and h-refinement / Solid mechanics 
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DESENVOLVIMENTO DO PROGRAMA GDAMS2D 1.0 

Um programa em MATLAB para análise estrutural de barragens gravidade usando 
elementos finitos de Lagrange com 9 nós 

Resumo 

Neste trabalho apresenta-se a versão 1.0 do programa GDams2D 1.0 desenvolvido para análise 

plana de barragens gravidade utilizando o método dos elementos finitos. Esta versão inicial do 

programa está preparada para efetuar a análise do comportamento estrutural de barragens gravidade 

em regime elástico-linear sob ações estáticas, usando elementos finitos de Lagrange, de 4 lados, 

com 9 pontos nodais. O programa GDams2D 1.0, desenvolvido em MATLAB, inclui um módulo para 

geração automática de malhas com grande nível de refinamento (geradas a partir de malhas largas 

de quadriláteros, com 4 pontos nodais, nos vértices) e está estruturado para uma fácil adaptação a 

análises não lineares recorrendo a módulos de “stress-transfer” como os recentemente desenvolvidos 

para os programas DamSlide3D e DamDamage3D.  

Após uma breve referência aos fundamentos da mecânica dos sólidos e às hipóteses simplificativas 

adotadas em elasticidade plana, apresentam-se os fundamentos do Método dos Elementos Finitos 

(MEF), referindo em particular a formulação dos EF planos quadrangulares (linear e isoparamétrico) 

de 4 nós (EF4nos), com duas translações por nó, e dos EF quadrangulares de Lagrange de 9 nós 

(EF9nos) utilizados no GDams2D 1.0. Com base em alguns exemplos de aplicação a estruturas 

planas simples cuja resposta é conhecida analiticamente, salientam-se as vantagens dos EF9nos 

relativamente aos EF4nos e efetua-se a verificação e operacionalidade do GDams2D 1.0 recorrendo 

a diversas discretizações. 

Por fim, apresenta-se como exemplo de aplicação o caso de uma barragem gravidade (25 m de 

altura) cujo comportamento estrutural para as ações do peso próprio e da pressão hidrostática é 

simulado com o GDams2D 1.0. Os resultados obtidos são analisados com base no módulo de pós-

processamento do GDams2D 1.0, também desenvolvido em MATLAB no âmbito do presente 

trabalho, o qual permite diversos tipos de representação do campo de deslocamentos e do campo de 

tensões. 

Palavras-chave: Barragens de gravidade / Comportamento elástico-linear / Convergência do MEF / 

Elementos finitos 2D Lagrangianos de 9 nós / Refinamento “p” e “h” / Mecânica 

dos sólidos 
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1 | Introduction 

“Culture, knowledge and science have worked together, side by side, in many 

civilizations, old and new, to develop one of the most important and necessary 

resources available to man: water” (Serafim, J. L.; Clough, R. W., 1990) 

Laginha Serafim and Ray Clough, in the introduction of their book on arch dams (Serafim, J. L.; 

Clough, R. W., 1990), began by emphasizing that for all civilizations, new and old, the control of water 

resources has always been recognized as a fundamental issue, hence the great importance of dams 

for modern society. 

Nowadays, due to the improvement on numerical methods for solving solid mechanics problems and 

due to the advances on digital technology, it has been generalized the use of computational models 

for dam safety control, namely for the simulation of the main aspects of dams behavior using the Finite 

Element Method (FEM). 

The FEM, which was founded with the publication of a set of scientific papers in the 1940s, was firstly 

developed as a numerical technique for finding approximate solutions to boundary value problems for 

partial differential equations. This numerical method is based on a problem domain’s subdivision into 

simpler parts, called finite elements (Clough 1960), and on the calculus of variations to minimize an 

associated error function. The scientific pillars of the finite element method were a direct result of the 

need to solve complex elasticity and structural analysis problems in civil and aeronautical engineering. 

The first developments can be traced back to the works of A. Hrennikoff and R. Courant [Hrennikoff, 

1941; Courant, 1943]. Although these pioneers used different perspectives in their finite element 

approaches, they each identified the one common and essential characteristic: mesh discretization of 

a continuous domain into a set of discrete sub-domains, usually called elements. Since the 1940s, the 

FEM was continuously developed by several mathematicians and engineers (Argyris 1954; Turner et. 

al 1956; Clough 1960;1965;1979 ; Clough & Wilson, 1962;  Zienkiewicz & Cheung 1967; Oliveira 

1968;  Zienkiewicz 1971; Strang & Fix 1973; Pedro 1977) and nowadays is the numerical tool most 

used for computational modeling of physical systems in many engineering disciplines including 

electromagnetism, heat transfer, fluid dynamics, and, of course, dam behavior, under static and 

dynamic loads. In what concerns the computational implementation of FEM it should be referred that, 

in 1965, NASA issued a request for a proposal for the development of the first program for structural 

analysis using the FEM technology.  The result was the program NASTRAN (NASA STRuctural 

ANalysis), developed by Computer Sciences Corporation (CSC), in 1968. In what concerns the 

Portuguese contribution for FEM,  it is important to highlight the work of Arantes e Oliveira that gave a 

significant contribution on the mathematical basis of the FEM theory (Oliveira 1968) and the 

contribution of Oliveira Pedro, that, working alongside with Zienkiewicz, brought the knowledge of this 

numerical method to Portugal and was the first to apply the FEM to dam structures (Pedro, 1977), 

starting a long lasting tradition in Laboratório Nacional de Engenharia Civil (LNEC). 
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In this report we present a FE program, GDams2D1.0, developed for 2D analysis of gravity dams 

using the finite element method. This initial version of the program is prepared to analyze the 

structural behavior of gravity dams for static loads, considering linear-elastic behavior, and using 

Lagrange finite elements of 4 sides, with 9 nodal points. The GDams2D1.0 program, developed in 

MATLAB, includes a module for automatic generation of meshes with a high level of refinement 

(generated from coarse meshes of quadrilaterals, with 4 nodal points at the vertices) and is designed 

for easy adaptation to non-linear analysis, using stress-transfer modules such as those recently 

developed for the DamSlide3D and DamDamage3D programs. 

After a brief reference to the fundamentals of solid mechanics and to the simplified hypotheses of 

plane elasticity, the Fundamentals of the Finite Element Method (FEM) are presented, referring in 

particular the formulation of the four-node, linear and isoparametric, finite element (FE4nos), with two 

translation d.o.f per node, and the quadrangular FEs of 9 nodes (FE9nos) used in GDams2D1.0. 

Based on some examples of application to simple 2D structures whose response is known 

analytically, the advantages of FEs are emphasized in relation to FE4nos and the verification and 

operability of GDams2D1.0 is made using various discretizations. 

Finally, the case of a gravity dam (25 m high) is presented. The dam’s structural behavior for the main 

loads, self-weight and hydrostatic pressure, is simulated with GDams2D1.0. The results obtained are 

analyzed based on the post-processing module of GDams2D1.0, also developed in MALTAB in the 

scope of the present work. This module allows several types of representation of the displacement 

field and stress field. 
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2 | Computational analysis of structures. Fundamental 
Equations for Plane elasticity 

2.1 Computational analysis of structures 

The Finite Element Method (FEM) is the most used method in computational analysis of structures 

(Figure 2.1). The main goal is to compute the displacement, strain and stress fields due to external 

loads.  

 

Figure 2.1 – Computational analysis of structures using FEM (adapted from Oliveira, S., 2016) 

 

To obtain the solution for the structural analysis problem it is necessary to know the structure 

geometry and the physical laws that govern its behavior, namely, how forces, stresses, deformations 

and displacements relate to each other. Those relationships can be expressed mathematically as a 

Boundary Value Problem based on the Navier’s differential equation 
TL (DLu) f 0  (see Figure 

2.1). 

In this work is assumed a linear elastic behavior for the materials and the hypothesis of small strains. 

 

2.2 The strain-displacement relation 

The normal strain is the measure of how the displacement changes through space, which can be seen 

as a displacement gradient. Physically, a normal strain component is the unit change in length of a line 

element (fiber). Error! Reference source not found. illustrates, for 2D case, the concept of normal 

train components and shear strain components (for small deformations we also have small angular 

variations so it can be assumed tan( )   and tan( )  , and we can write 1 2u / x    , and 

2 1u / x     ) (DES-UA; 2008). 

 

 

Navier’s equation 
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a.                                                                                 b. 

                                
 

Figure 2.2 – Normal strain components (a.) and shear strain components (b.), adapted from (Oliveira, S.; 2016) 

 

Figure 2.2a. represents schematically the concept of normal strain components at a point P, only with 

fiber length variation, where 
1

11

1

u

x


 


 and 

2
22

2

u

x


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
. 

 

In Figure 2.2b. is represented schematically the concept of shear strain components at P, that is 

related with the angle variation of perpendicular material lines, being

1 2

12 21

2 1

u u1 1
( )

x x2 2

  
         

. 

The strain displacement relation, for the 2D case, is given by the following expression, where L  is a 

linear differential operator (Zienkiewicz, O. C. et al., 2005) 

1
11

11

11

12
22 22

2 22

12

1 2

12
2 12 1

u
0

xx

uu
0 L

x ux
2

u u1

x xx x2

u

   
      

      
                        

           

 (1) 

 

2.3 The stress-strain relations 

Considering an isotropic and homogeneous material subjected to uniaxial tensile stress, one can 

expect it to extend towards the axis direction and to contract transversally. In linear elasticity, stresses 
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are proportional to strains, being the Young’s Modulus (E) the proportionality constant. The proportion 

of contraction relative to the normal extension is given by the Poisson ratio () (DES-UA, 2015) 

The abovementioned relation, also known as elasticity equation or Hooke’s law, can be written as 

follows 

11 11 22 33 11

1
,

E E


          (2) 

For a 3D equilibrium the constitutive equations are presented in Figure 2.3a., where the elasticity 

matrix D , for isotropic materials, is expressed in terms of E and  (the shear modulus is   

E
G

2(1 )



). 

When considering the cases of plane stress or plane strain, the constitutive equations can be 

simplified as is presented in Figure 2.3b. 

 

2.4 Equilibrium equation. The relation between stress spatial 

derivatives and body forces 

In Figure 2.4 is shown the equilibrium, in x1 direction, of a 2D infinitesimal material element (a 

quadrilateral element of area dx1dx2) considering the stress spatial variation and the resultant forces at 

the infinitesimal sides. In the figure, f 1 represents the body force in x1 direction. It is relevant to note 

that f1 could represent gravitational forces as well as inertial and damping forces. 

The equilibrium equation for 2D case is  

 

1

2

11 21
x 1

1 2

12 22
x 2

1 2

11

1 2 1 T

22

2
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2 1

F 0 f 0
x x
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x x

0
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0
x x
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 (5) 
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Figure 2.3 –  Constitutive equations. 3D and 2D cases. Plane strain and plane stress (adapted from Oliveira, S., 2016) 

3D CASE 

2D CASE 

Plane stress 

Plane strain 

 Elasticity matrix for plane stress 

 

 

 Elasticity matrix for plane strain 

 

 

 Elasticity matrix for 
general 3D case 
 

a. 

b. 
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Figure 2.4 – Body forces, normal and shear stresses acting on a differential element (adapted from DES-UA, 2008) 

 

2.5 Navier’s equation 

 

In Figure 2.5 it can be noticed that it is possible to replace   by Lu  in the elasticity equation and that 

DLu  can replace   in the equilibrium equation. So it results the Navier’s equation, which is a 

fundamental equation of solid mechanics (displacement formulation). The Navier’s equation 

establishes a relation between body forces and displacement derivatives.  

 

Figure 2.5 – Main equations of Solid Mechanics (adapted from Oliveira, S., 2016) 
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For engineering structures it is not possible to solve analytically the correspondent boundary values 

problem involving the Navier equation (differential equation with second order partial derivatives), 

consequently, it is necessary the use of numerical methods like the FEM. 

In the next section it is briefly explained how the Navier’s equation (differential equation, or strong 

form) can be transformed into an integral equation (weak form), used for obtaining the numerical 

solution by FEM. 

 

2.6 Weak formulation 

As referred above, in order to achieve numerical solutions for Navier’s differential equation using the 

FEM, it is convenient to find an integral form (weak form) of the equation 
TL (DL ) f 0u    , which is 

a differential equation, of the general form F(x)=0, that should be verified in the domain (structure’s 

volume) for some predefined boundary conditions. Through the application of the Fundamental 

Lemma of Calculus of Variations (FLCV), which is the basis of the weighted residual method, function 

F(x) is zero in its domain if the integral of F(x) multiplied by any trial function = (x)v v  is equal to 

zero (eq.6) 

 

(x) 0, x (x) (x) x 0 , for any trial function (x) CV

V

F V F d      v v  (6) 

Consequently, 

T T
V

V

dV 0L DL f.  , C( u )

Boundary Conditions

     



v v

 (7) 

 

Using the Green-Gauss theorem, equation 7 becomes,  

T T

V

V V

(L ) DL dV f dVu  , C   v v v  (8) 

There are three last notes which deserve mentioning. Firstly, it is noticeable that equation 8 is free of 

second order derivatives. There are only first order partial derivatives from the unknown function u . 

Secondly, it is important to remind that one can directly deduce the integral form of Navier’s Equation 

by applying the Principle of Virtual Works (PVW). Finally, the trial functions (v ) correspond to the 

concept of virtual displacement field used in the PVW. 
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3 | Finite Element Method 

3.1 Introductory considerations 

In structural analysis, the numerical solution of the boundary value problem involving the Navier’s 

equation is usually performed using a discretization into finite elements (FE). The structure is divided 

into elements of finite volume (FE), connected with each other by nodal points. The goal is to compute 

the displacement vectors at the nodal points considered. 

The FEM’s main idea is to consider that the displacement field  31 2u=u x ,x ,x  may be achieved 

through a linear combination of interpolation functions or shape functions N . At a given point P within 

a finite element, the displacement vector Pu  can be obtained using the values PN  of the interpolation 

functions in P, and the values of the element nodal displacements (
eu ):

e

P PN u  u . It should be 

noticed that 
eu  is a column vector with the displacement values at the element nodal points. 

For a 2D quadrilateral element of 4 nodes, Pu  becomes: 

e 1

1

e 1

2

e 2

1

e 2
1 2 3 41e 2

e 3
1 2 3 42 1

e 3

2

e 4

1

e 4

2

u

u

u

N 0 N 0 N 0 N 0 u
Nu

0 N 0 N 0 N 0 N u

u

u

u

,

,

,

,

,

,

,

,

u
u

u

 
 
 
 
 

    
      

     
 
 
 
 
 

 (9) 

For a 2D quadrilateral element of 9 nodes we have 

e 1

1

e 1

2

e 2

1

1 2 91e e 2

2

1 2 92

e 9

1

e 9

2

u

u

u
N 0 N 0 N 0

Nu u
0 N 0 N 0 N

u

u

,

,

,

,

,

,

...u
u

...u

 
 
 
 

    
      

     
 
 
 
 

 (10) 

Considering that the virtual displacement field within a finite element can be reached by an expression 

identical to 10, it results 

eNv v  (11) 
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Hence, the weak form of Navier’s equation can be written as follows, for a finite element of volume Ve, 

considering expressions 8, 9, 10 and 11. 

e e

T e e T ee

V V

DL(Nu )dV (N ) f dV NL(N )  ,       vv vv  (12) 

Simplifying, by elimination of
e

v , we obtain 

 
e e

T e T

V V

D(LN)dV u N f dVLN    (13) 

Using the notation B LN for the derivatives of the interpolation functions (Zienkiewicz et al., 2005), 

we can write  

e e

T e T

V V

B DB dV u N f dV   (14) 

or 

e e eK u F  (15) 

that is known as the equilibrium equation of a finite element, in the algebraic form, where, 

e

e T

V

K B DB dV   - Finite element stiffness matrix. 

e

e T

V

F N f dV   - Finite element nodal forces vector. 

Figure 3.1 schematically presents how it is possible to discretize a structure in finite elements and how 

to introduce FEM’s fundamental approximation in Navier’s equation weak form in order to obtain the 

equilibrium equations in the algebraic form.  
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Figure 3.1 – Structural analysis using FEM. Introduction of FEM’s fundamental approximation in the integral form of 
Navier’s equation 
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3.2  Finite element with 4 nodal points for plane structures 

For this study, considering 2D equilibria, it was decided to use a master isoparametric Lagrangian 

element of the type linear with 4 nodal points and another one of the type quadratic with 9 nodal 

points. In this sub-chapter is presented the 4 nodal points master element. 

Figure 3.2 presents the notation used for local axis (y1 and y2), the local degrees of freedom (from 
e,1

1u  

to 
e,4

2u ), the nodes (from N1 to N4) and the Gaussian interpolation points (red crosses).  

 

Figure 3.2 – Plain, 4 nodes, isoparametric finite element. The Gaussian interpolation points locations are presented 
with the red color cross 

The Gauss weights, for this 4 nodes element, are all equal to 1.
1
 

Equations 16 present the analytical expressions for the interpolation functions of each node. In Figure 

3.3 the shape functions are presented.  

   

   

   

   

1 1 2

2 1 2

3 1 2

4 1 2

N 0 25 1 y 1 y

N 0 25 1 y 1 y

N 0 25 1 y 1 y

N 0 25 1 y 1 y

.

.

.

.

   


   


   
    

 (16) 

                                                           

1
 The sum of all Gauss weights, for any 2D quadrangular master element, is equal to 4. 
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Figure 3.3 – Interpolation functions of the 4 nodal points element 

3.3 2D finite element with 9 nodal points 

. 

Figure 3.4, presents the quadrilateral element with 9 nodal points. The location of Gauss points is 

presented and the correspondent weights (equal to (5/9)
2
, (8/9)

2
 and 5/9 x 8/9). 

 

 

Figure 3.4 – Isoparametric finite element with 9 nodes (master). The Gauss interpolation points are represented with 
red color crosses 

 

Equation (17) present the 9 analytical expressions for the interpolation functions (Figure 3.5).  
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   

   

   

   

   

   

   

   

 

1 2 12 1

2 2 12 1

3 2 12 1

4 2 12 1

2
5 22 1

2
6 112

2
7 22 1

2
8 112

2
9 2

N 0 25 y y1 y 1 y

N 0 25 y y1 y 1 y

N 0 25 y y1 y 1 y

N 0 25 y y1 y 1 y

N y 0 51 y 1 y

N y 0 51 y1 y

N y 0 51 y 1 y

N y 0 51 y1 y

N 1 y 1 y

.

.

.

.

.

.

.

.

       

      

     

      

       

     

      

      

     2

1



















 (17) 

 

 

Side nodes                                                                  Vertices nodes 

 

 
Central node (node 9) 

 

Figure 3.5 – Interpolation functions of the quadrilateral finite element with 9 nodal points 
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4 | The Program GDams2D 1.0 

In this section are referred the main characteristics of the version 1.0 of the GDams2D 1.0 program 

developed for 2D analysis of gravity dams using the finite element method (Figure 4.1). This initial 

version of the program is prepared to analyze the structural behavior of gravity dams for static loads, 

considering linear-elastic behavior, and using Lagrange finite elements of 4 sides, with 9 nodal points. 

The GDams2D 1.0 program, developed in MATLAB, includes a module for automatic generation of 

meshes with a great level of refinement (generated from coarse meshes of quadrilaterals, with 4 nodal 

points at the vertices) and is designed for easy adaptation to non-linear analyzes, using stress-transfer 

modules such as those recently developed for the DamSlide3D and DamDamage3D programs. 
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For each finite element (for n=1:NE) 

Calculate 
31 2 4

31 2 4

ee e e

1 1 1 1

ee e e
(2 4)

2 2 2 2

x x x x
x

x x x x

 
 
 

 , element n nodes coordinates matrix 

For each Gauss Point (for  iPG = 1: 4) with local coordinates  y1=0.57735, y2=0.57735 

Calculate the Interpolation Function (IF) values and corresponding partial derivatives in 

respect to the local coordinates (in Gauss Point iPG): 

             

1 1
1 1 2 2 1

1 2

2 2
2 1 2 2 1

1 2

3 3
3 1 2 2 1

1 2

4 4
4 1 2 2 1

1 2

N N1 1 1
N (1 y )(1 y ) (1 y ) (1 y )

4 y 4 y 4

N N1 1 1
N (1 y )(1 y ) (1 y ) (1 y )

4 y 4 y 4

N N1 1 1
N (1 y )(1 y ) (1 y ) (1 y )

4 y 4 y 4

N N1 1 1
N (1 y )(1 y ) (1 y ) (1 y )

4 y 4 y 4

 
       

 

 
      

 

 
       

 

 
        

 

 

       Calculate the Jacobian matrix: 

 

31 2 4

31 2 4

1 1

1 2

2 2

ee e e
1 211 12 1 1 1 1

ee e e
21 22 3 32 2 2 2

1 2

4 4

1 2

N N

y y

N N

y yJ J x x x x

J J N Nx x x x

y y

N N

y y

J

  
  
 
  
                
 
  

  
 
  

 

Calculate the IF partial derivatives in 

respect to the global coordinates: 

1 1 1 1

1 2 1 2

2 2 2 2

1 2 1 2

3 3 3 3

1 2 1 2

4 4 4 4

1 2 1 2PG PG

1

PG

N N N N

x x y y

N N N N

x x y y
.

N N N N

x x y y

N N N N

x x y y

J


      
      
   
      
      
   
      
   
      

      
   
      

 

         Assemble matrix B   eB L N , B u    

  

31 2 4

1 1 1 1

31 2 4

2 2 2 2

3 31 1 2 2 4 4

2 1 2 1 2 1 2 1 PG

NN N N
0 0 0 0

x x x x

NN N N
0 0 0 0

x x x x

N NN N N N N N

x x x x x x x x

B

   
 
    

   
  

    
       
 
        

 

Calculate the matrix corresponding 
to the following matrix product:   

t 
T

B D B J  

( t  - finite element thickness) 

 

The numerical integration through the Gauss method for matrix t
T

B D B J  over the finite 
element area (split in 4 quadrilaterals: one for each Gauss Point) is equal to the continuous sum of 
matrix e

T
B D B J  for each Gauss Point (Gauss sum to obtain 

eK ) 

           T T T Te

PG1 PG2 PG3 PG4(8 8)

K B D B J B D B J B D B J B D B J


   t t t t  

end 

“Spreading” of the elementar matrices 
e

K  into the global stiffness matrix  K  (assembly) 

end 

Figure 4.1 – MATLAB programming script scheme for the FEM elementar stiffness matrix calculus and subsequent 
assembly on the global stiffness matrix, considering a 4 nodal points 2D element 
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5 | Test Structures 

5.1 Introductory considerations 

The FEM numerical solutions should approach analytical solutions as the mesh is refined. Whether a 

p-refinement (polynomial refinement: in this section is made a comparison between results from a 4 

nodes element mesh and from a 9 nodes element mesh) or an h-refinement (refinement in number of 

elements) are taken into consideration, it is always implied a convergence (DAES-UCB, 2017). 

In order to verify the GDams2D 1.0 basic structures were used, with known theoretical solutions 

This chapter presents the results of the FEM’s application to the following cases: a beam and a 2D 

plane elasticity structure. 

5.2 2D structure 

The first test case is about a 2D plane elasticity structure with its top and left face roller supported and 

with a constant distributed load applied on its bottom face (Figure 5.1). In this test, considering the 

plane stress hypothesis, it is expected  u1 = - . u2 . 

In Figure 5.1 are presented results for a finite element mesh with linear quadrilateral elements of 4 

nodes element. Figure 5.1a presents the structure’s geometry, boundary conditions, applied forces, 

discretization and material properties. In Figure 5.1b and 5.1c. is presented the displacement field 

(components u1 and u2) and, finally, in Figure 5.1d is presented the stress field. In (b.), (c.) and (d.) are 

presented the results from FEM2D_4N, considering a master element with 4 nodes. 

In Figure 5.2 are presented the same results for a finite element mesh with linear quadrilateral 

elements of 9 nodes element. 

From Figure 5.1 and Figure 5.2  one can verify that the numerical results obtained with both 

discretizations corresponds to the theoretical results (for both displacement field and stress field). 
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      a. 

 

 

 

              Thickness = 1 m 

              Material properties: 

                E= 20 GPa    =0.20 

                Plane stress hypothesis 

              Applied Tension: 

                22 = 1.0 MPa 

              Discretization (FEM2D_4N): 

                NP=25 

                NE=16 

 

        b. 

Deformed Shape / Displacement Field. Color for u2 

 

         c. 

Deformed Shape / Displacement Field. Color for u1 

 

    (Analytical Solution:
2

L
u 200 m

E


   )                             (Analytical Solution:  u1  =  - .u2   =  40 m) 

                                               d. 

                                                                Principal Stresses 

 

Figure 5.1 – Test example using a FE mesh with linear elements of 4 nodes (Plane elasticity) 
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      a. 

 

 

 

              Thickness = 1 m 

              Material properties: 

                E= 20 GPa    =0.20 

                Plane stress hypothesis 

              Applied Tension: 

                22 = 1.0 MPa 

              Discretization (FEM2D_9N): 

                NP=81 

                NE=16 

 

        b. 

Deformed Shape / Displacement Field. Color for u2 

 

         c. 

Deformed Shape / Displacement Field. Color for u1 

 

    (Analytical Solution:
2

L
u 200 m

E


   )                             (Analytical Solution:   u1  =  -.u2  = 40 m) 

                                               d. 

                                                                Principal Stresses 

 

Figure 5.2 – Test example. Results from the program GDams2D1.0 (Plane elasticity) 
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When one centers the attention on the stresses fields presented in Figure 5.1d and in Figure 5.2d, it is 

possible to acknowledge that it emerges as expected. First, their values are evenly distributed across 

the structure and equal to the load/stress applied, which, in this case is 1 MPa. Secondly, the stresses 

are only generated under 22 direction, the applied load direction, as a result, in the other direction 

(towards x1 axis) the stresses are equal to zero. 11 is equal to zero because the support conditions 

enables free movement for the deformation on the perpendicular direction. Since, there is no restrain 

to that movement, consequently, there are no stresses created under that direction as well. 

From the analyses of the displacement fields along both x1 and x2 directions (Figure 5.1b, Figure 5.1c, 

Figure 5.2b and Figure 5.2c), and following exactly the purpose of the test, the relationship between 

displacements is equal to the Poisson’s ratio. From the figures, the maximum displacement on node 

25 is equal to -200 m under x2 direction and -40 m under x1 direction, which means that u1 

displacement is equal to u2 displacement times the Poisson’s coefficient, just as it was needed to be 

proved. 

For the current loading, structure and support conditions, it is possible to calculate the theoretical 

maximum displacement by the following formula. 

6 6

2 9

1 2

L 1 10 4 10
u 200 m

E 20 10

u u 0 2 200 40 m,

    
   


        

 (18) 

This result is equal to those obtained numerically using both meshes, proving the outputs coherency 

for this test.  

 

5.3 Fixed-fixed supported beam 

In this section is considered a fixed-fixed beam, 10 m span, with rectangular section (1 x 1 m), 

subjected to the self-weight (=25 kN/m
3
). It was assumed the hypothesis of plane stress, with E=20 

GPa and =0,2. The beam displacements and principal stresses were numerically computed by FEM 

using two discretizations with linear FE of 4 nodes  (Figs. 5.3 and 5.4) and two discretizations with 2
nd

 

order FE of 9 nodes used in GDams2D (Figs.5.5 and 5.6). 

In what concerns the analytical solution, the maximum displacement at the center of the beam, 

considering shear deformation, is given by equation 19 (Ghugal, Y., Sharma, R., 2011). 

 

 

 

4 2

1 span 22

4 2
6

3 2
6

q L h
u 1 9.6 1

384EI L

25 10 1
10 435.63 m1 9.6 1 0.2

1 1 10
384 20 10

12

 
    

 

  
       

  

 (19) 
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Using a coarse mesh with 22 finite elements of 4 nodes (FE4nodes) is computed a value of 314.33 m 

for the middle span displacement (Figure 5.3), clearly lower than the theoretical value of 435.63 m (a 

difference of about -27,85%). With this kind of linear elements it is necessary the use of a very “h” 

refined mesh in order to obtain a good result.  Using a mesh with 5632 FE4nodes is computed a value 

of 433.68 m for the middle span displacement (Figure 5.4), much closer to the theoretical value of 

435.63 m (a difference of about -0,45%). 

On the other hand, using GDams2D, and a coarse mesh with 22 finite elements of 9 nodes 

(FE9nodes) the computed mid span displacement is 431.57 m (Figure 5.5), close to the theoretical 

value of 435.63 m (a difference of about -0,93%). 

Also using GDams2D, and a very refined mesh, with 5632 FE9nodes, the computed mid span 

displacement is 434.41 m (Figure 5.6), very close to the theoretical value of 435.63 m (a difference 

of about -0,28%). 

In what concerns the stresses it is also obtained a good agreement between computed and numerical 

results. For example, as presented in Figure 5.6c, the maximum tension stress at the mid span section 

should be 625 kPa (theoretical value: 
2

max 1/2M.y / I, M qL / 24   ) and the numerical value 

obtained is 623,5 kPa (a small difference of about -0,24%). 

In Figure 5.7 is shown how the numerical values computed for the mid span displacement, using 

meshes with increasing refinement, converge to the theoretical value.  
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       a. 

 

Material properties:             

    E= 20 GPa 

    =0.20 

    Plane stress hypothesis 

Applied Load: 

    Self-Weight (SW) = 25 kN/m3 

Discretization (FEM2D_4N): 

    NP=36 

    NE=22 

 

 

        b. 

                                 Deformed Shape / Displacement Field (SW). Color for |u|. 

 

             

4 2

1 2 span
2

q L h
435.63 m1 9.6u 1

384 EI L
    

 
  

(Ghugal, Y., Sharma, R., 2011) 

 

         c. 

                                                                Principal Stresses (SW) 

 

 

Figure 5.3 – Test example using a mesh with linear 4 node elements. Fixed-fixed beam: 22 elements discretization 
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       a. 

 

Material properties:             

    E= 20 GPa 

    =0.20 

    Plane stress hypothesis 

Applied Load: 

    Self-Weight (SW) = 25 kN/m3 

Discretization (FEM2D_4N): 

    NP=5841 

    NE=5632 

 

        b. 

                                 Deformed Shape / Displacement Field (SW). Color for |u|. 

 

                                                                       |u|mid-span=435.63 m 

         c. 

                                                                    Principal Stresses (SW) 

 

 

Figure 5.4 – Test example using a mesh with linear 4 node elements. Fixed-fixed beam. 5632 elements discretization  
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       a. 

 

Material properties:             

    E= 20 GPa 

    =0.20 

    Plane stress hypothesis 

Applied Load: 

    Self-Weight (SW) = 25 kN/m3 

Discretization (FEM2D_9N): 

    NP=115 

    NE=22 

 

 

 

        b. 

                                 Deformed Shape / Displacement Field (SW). Color for |u|. 

 

                                                                 |u|mid-span=435.63 m 

 

 

         c. 

                                                                  Principal Stresses (SW) 

       

 

Figure 5.5 – Use of Lagrangian 2DFE of 9 nodes (GDams2D1.0). Fixed-fixed beam under SW load: coarse mesh with 
22 elements. Displacements and principal stresses 
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       a. 

 

Material properties:             

    E= 20 GPa 

    =0.20 

    Plane stress hypothesis 

Applied Load: 

    Self-Weight (SW) = 25 kN/m3 

Discretization (FEM2D_9N): 

    NP=22945 

    NE=5632 

 

        b. 

                                 Deformed Shape / Displacement Field (SW). Color for |u|. 

 

                                                                   |u|mid-span=435.63 m 

 

         c. 

                                                                    Principal Stresses (SW) 

 

 

Figure 5.6 – Use of Lagrangian 2DFE of 9 nodes (GDams2D1.0). Fixed-fixed beam under SW load: fine mesh with 
5632 elements (automatically generated with GDams2D1.0 from a coarse mesh). Displacements and principal 

stresses 

max = 623,5 kPa 

(theoretical value: 625 kPa) 
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Figure 5.7 – Mid-span displacement on a fixed-fixed beam under SW load for different mesh refinements 

 

 

5.3.1 Analysis of the stress patterns computed in each element 

In FE computations using a displacement formulation, the stress distribution along sides of adjacent 

elements is not coherent. This implies that in elements with adjacent sides, only in some specific 

cases we will have a continuous distribution of the tension field across those referred adjacent sides. 

Although, it is important to underline that, at the limit, considering a continuous “h” and/or “p” 

refinement, the FEM will converge to the exact solution and, therefore, those element boundaries will 

have, at the limit, equal values (Zienkiewicz, O. C. et al., 2005). For example, Figure 5.8 presents the 

analysis of a cantilever beam formed by four rectangular serendipity elements with 8 nodes in which it 

is possible to understand how well the stresses sampled at the Gauss points (superconvergent points) 

behave when compared with the overall stress pattern computed in each element. 
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Figure 5.8 – Cantilever beam with four serendipity elements with 8 nodes. Stress sampling using 4 Gauss points 
(2x2) and extrapolation to nodes (Zienkiewicz, O. C. et al., 2005, p. 466) using the shape functions 

 

In Figure 5.9 the numerical values of 11 and 12 computed in the fixed-fixed beam, with three 

different meshes of linear finite elements of 4nodes, are presented. It can be seen that for the normal 

component 11 a good continuity between adjacent elements is obtained, namely for the most refined 

mesh. However, for the shear stress component 12 it is not obtained a good continuity between 

adjacent elements. 

In Figure 5.10 the numerical values of 11 and 12 computed with three different meshes of quadratic 

finite elements of 9nodes (GDams2D), are presented. It can be seen that for both stress components 

(11 and 12) a good continuity between adjacent elements is obtained, namely for the most refined 

mesh.  
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11 

 

 

 
 

12 

 
 

 

 

Figure 5.9 – Use of linear 2DFE with 4 nodes. Stress analysis: numerical results for 11 and 12 fields considering an 
increasing h-refinement in a fixed-fixed beam under the SW load 

22 elements and 36 nodal points 

 

88 elements and 115 nodal points 

352 elements and 405 nodal points 

 

22 elements and 36 nodal points 

88 elements and 115 nodal points 

352 elements and 405 nodal points 
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11 

 
 

 

 

12 

 
 

 
 

 

Figure 5.10 – Use of Lagrangian 2DFE of 9 nodes. Stress analysis (GDams2D1.0): numerical results for 11 and 12 
fields considering an increasing h-refinement in a fixed-fixed beam under the SW load 

22 elements and 115 nodal points  

88 elements and 405 nodal points 

352 elements and 1513 nodal points 

 

22 elements and 36 nodal points 

88 elements and 405 nodal points 

352 elements and 1513 nodal points 
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6 | Gravity Dam. Case Study 

6.1 Dam presentation 

The case study here presented is a gravity dam, located in Ponsul’s river (Tagus river basin), that was 

built for water supply and irrigation. The dam, in operation since 1978, is a 25 m high concrete gravity 

with a crest length of about 112 m (Figure 6.1).  

 

 
 

 

Figure 6.1 – Gravity dam. On the top left, downstream view (photo). On the top right, the cross section view 
(Pereira, R.; 2011). On the middle, the site plan. On the bottom, the downstream elevation view (CNPGB, 1992) 

 

Taking advantage of the site topography and considering the plan view, the dam alignment presents a 

16 m central straight section. Toward the sides, it reveals a circular geometry on the upstream face, 

which has a 150 m radius on the left river bank, and 160 m on the right bank. Both discharges (top 
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and bottom) are located on the central section. As a whole, the dam is composed by 7 blocks, 16 m 

each, split by watertight contraction joints. The concrete mixture used was composed by 250 kg of 

cement per cubic meter. A drainage/inspection gallery is located inside the dam’s base and extends 

itself through most of the dam’s length (top right of Figure 6.1). The dam has a triangular profile with a 

vertical upstream face and a 0.8H 1V  inclined downstream face (AdC, 2009). 

6.2 Dam structural behavior modelling 

In order to study the dam structural behavior for the main loads, self-weight (SW) and hydrostatic 

pressure (HP) it was developed a 2D FE model of the dam central section (plane strain hypothesis). 

Using Gdams2D 1.0 it was considered an input mesh of FE4nodes, presented in Figure 6.2, that was 

automatically converted into a mesh of FE9nodes (Figure 6.3).  

It was assumed for concrete an elasticity modulus Ec = 30 GPa and for the foundation Ef = 20 GPa. 

The Poisson ratio considered for both materials was =0.2.  

Figure 6.4 presents the displacements and principal stresses computed with GDams2D1.0 for the 

self-weight (SW).  Figure 6.5 present the same results for the hydrostatic pressure, considering full 

reservoir (HPFR), and Figure 6.6 for the load combination SW+HPFR. It should be noticed that for this 

load combination tension stresses do not occur at the upstream toe.  
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         Material properties:             

            Econcrete= 30 GPa; Efoundation=20 GPa; =0.20 

            Plane strain hypothesis
 

         Discretization (EF4N): 

             NP=235 

             NE=201 

 

Figure 6.2 – Dam discretization. Input mesh (FE with 4 nodal points) used for automatic generation of the final mesh with Lagrangian FE of 9 nodes  
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         Material properties:             

            Econcrete= 30 GPa; Efoundation=20 GPa; =0.20 

            Plane strain hypothesis
 

         Discretization (EF9N): 

             NP=871 

             NE=201 

Figure 6.3 – Dam discretization using Lagrangian FE with 9 nodal points (automatically generated with GDams2D1.0)  
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Deformed Shape / Displacement Field (SW). Color for |u| 

 

 

 

 

Principal Stresses (SW) 

 

Figure 6.4 – Dam response under self-weight. Displacements and principal stresses (GDams2D1.0) 
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Deformed Shape / Displacement Field (HP). Color for |u| 

 

 

 

 

 

Principal Stresses (HP) 

 

Figure 6.5 – Dam response under hydrostatic pressure. Displacements and principal stresses (GDams2D1.0) 
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Deformed Shape / Displacement Field (SW + HP). Color for |u| 

 

 

 

 

Principal Stresses (SW + HP) 

 

Figure 6.6 – Dam response under self-weight and hydrostatic pressure. Displacements and principal stresses 
(GDams2D1.0) 
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The presented dam model can be used for the analysis of the observed dam behavior. In LNEC, The 

data from dam observation is processed using the program DamSafe1.0 (Figure 6.7). This program 

receives the observed data, e.g. displacements histories, and separates the effect of each load, which 

the structure is subjected. 

From the outputs of DamSafe1.0, as it is shown in the bottom part of Figure 6.7, the experimental 

value for the maximum displacement at the crest, due to the hydrostatic pressure, is of about 1.5 mm 

(full reservoir), accordingly the effects separation. The correspondent displacement computed with the 

presented FE model (GDams2D1.0) is of about 1.4 mm, that is a value perfectly coherent with the 

identified value (1.5 mm). 

Thus, taking into account the good agreement between the dam displacements computed with 

GDams2D1.0 and the observed displacements, we can be confident that the program is indeed 

operational and that the designed model is delivering reliable results, simulating well the actual dam 

behavior for the main loads, namely for the hydrostatic pressure. 
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Figure 6.7 – DamSafe1.0. Program for observation data analysis, using effects separation models. Program’s main 
menu, output window for the studied dam. Zoom on the hydrostatic effect graph 
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7 | Conclusions 

The main objective of this report was the presentation of the FE program, GDams2D 1.0, developed 

for 2D analysis of gravity dams using the finite element method. This initial version of the program is 

prepared to analyze the structural behavior of gravity dams for static loads, considering linear-elastic 

behavior, and using quadrilateral Lagrangian finite elements, with 9 nodal points. 

The GDams2D 1.0 program, was developed in MATLAB, and includes a module for automatic 

generation of meshes with high level of refinement (generated from coarse meshes of quadrilaterals, 

with 4 nodal points at the vertices). It was designed for easy adaptation to non-linear analyzes, using 

stress-transfer modules such as those recently developed for the DamSlide3D and DamDamage3D 

programs. 

After a brief reference to the fundamentals of solid mechanics and to the simplified hypotheses of 

plane elasticity, the Fundamentals of the Finite Element Method (FEM) were presented, referring in 

particular the formulation of the four-node, linear and isoparametric, finite element (FE4nodes), with 

two translation d.o.f per node, and the quadrangular FEs of 9 nodes (FE9nodes) used in 

GDams2D1.0. Based on some examples of application to simple 2D structures whose response is 

known analytically, the advantages of FE9nodes was emphasized in relation to FE4nodes and the 

verification and operability of GDams2D1.0 was made using various discretizations. 

Finally, the case of a gravity dam (25 m high) was presented. The dam’s structural behavior for the 

main loads, self-weight and hydrostatic pressure, was simulated with GDams2D1.0. The results 

obtained were analyzed based on the post-processing module of GDams2D1.0, also developed in 

MALTAB. It was emphasized that this module allows several types of representation of the 

displacement field and stress field. 
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