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Abstract. Several concrete structures had shown signs of degradation some years after 
construction due to internal expansive reactions. Among these reactions there are the alkali-
aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids 
which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction 
(ACR). The more common is the ASR which occurs when certain types of reactive silica are 
present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the 
concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and 
feldspars, the latter being the minerals which contain more alkalis in their structure and thus, 
able to release them in conditions of high alkalinity. Although these aggregates are of slow 
reaction, some structures where they were applied show evidence of deterioration due to ASR 
some years or decades after the construction. In the present work, the possible contribution of 
granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by 
performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the 
quarries in what concerns the degree of alteration and/or fracturing, rock samples with different 
alteration were analysed. The alteration degree was characterized both under optical microscope 
and image analysis and compared with the results obtained from the chemical tests. It was 
concluded that natural alteration reduces dramatically the releasable alkalis available in the 
rocks. 

1. Introduction 
There are two main types of internal expansive reactions that can affect the durability of concrete: 
internal sulphate reaction (ISR) and alkali-aggregate reaction (AAR). In AAR two types of reactions are 
generally considered: alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) [1]. ASR, the 
most common AAR, occurs between the alkali hydroxides released during the cement hydration or 
released from the aggregate particles, with different forms of reactive silica present in aggregates.  

Although granitic aggregates are usually considered unlikely to be reactive to alkalis, some studies 
have been developed which showed that this is not always the case [2, 3, 4]. Granites contain feldspars, 
quartz and mica as the main components and are classified as alkali slowly reactive, since structures 
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with these aggregates can present manifestations of ASR decades after being built. The features that can 
be identified by petrographic analysis and which are supposed to contribute to the potential alkali 
reactivity of these rocks are the presence of deformed quartz with undulatory extinction, strain lamellae 
and ribbon texture, bulging and sub-graining. In addition, porosity and microcracks can also play a role 
by promoting the circulation of fluids in the interior of the aggregate particles. Besides the presence of 
potentially reactive silica, research developed in Canada [5,6] proved that some aggregates can release 
alkalis to the concrete interstitial solution therefore increasing the total alkalis content of concrete and 
eventually contributing to ASR. 

Granitic quarries are usually heterogeneous, containing rocks with variable degrees of alteration. 
Four granitic aggregates were selected for this work which is focused in two interrelated subjects, 
namely, it aims to determine the content of alkalis released by some Portuguese granites; and to define 
the influence of the degree of alteration of the rocks on the capacity to release alkalis. The alteration 
features were evaluated by image analysis in order to establish the classes of alteration. Two alkaline 
solutions were employed [8], namely NaOH and KOH, in order to evaluate the alkalis release. The 
results obtained are presented and discussed. 

2. Materials and methods 
Four Portuguese granitic aggregates identified as GR2, GR23, GR24 and GR29 were selected. For each 
aggregate, two different fractions where hand separated from the batches received from the quarries: 
one fraction is composed of sound, light grey non-altered rock (GR2-N, GR23-N, GR24-N, GR29-N), 
and the other of yellowish altered granite (GR2-A, GR23-A, GR24-A, GR29-A). These aggregates were 
previously tested by the accelerated concrete prism test RILEM AAR-4.1 [1] which had shown reactivity 
values between 0.03 % (GR23 and GR29) to 0.06 % (GR2 and GR24) at 15 weeks. The expansion 
values obtained allowed to classify all these granites as Class II, likely to be potentially reactive, 
according to RILEM [1] and LNEC [7] Recommendations. 

The petrographic analysis of the thin sections of the aggregates was performed under polarizing 
microscope OLYMPUS BX60F5, coupled with a digital camera and Pelcon automatic point-counter. 
The definition of alkali reactivity was based on the dimensions of the crystals of quartz (<100 µm = 
microcrystalline quartz). In order to establish classes of alteration, image analysis was carried out on 
photomicrographs, after converting them to grayscale images. A threshold was applied for selecting a 
range of certain shades, allowing highlighting the alteration of the feldspars to clay minerals and 
microcrystalline muscovite and the density of cracks in each sample. 

For the determination of the alkali content released by the aggregates the samples were first crushed 
and grinded, to pass a 150 µm sieve. Then, 100 g of each grinded sample were immersed in 400 mL of 
alkaline solution at a ratio of 1:4 aggregate/solution and maintained at 38 ºC (test conditions of RILEM 
AAR-3[1]). Two alkaline solutions were employed: NaOH 0.7M (for the evaluation of the K supply) 
and KOH 0.7M (for the Na supply). Twice a week, the test containers were gently rolled back for about 
10 seconds, and at predefined time intervals (e.g.: 2, 7, 13 and 26 weeks) a sample was taken from the 
test solution (10 mL) to be analysed by Atomic Absorption Spectroscopy (AAS), after filtration and 
acidification [8, 9]. 

3. Results and discussions 

3.1. Petrographic Analysis 
The petrographic analysis focused on the features of the rocks which are considered to contribute to the 
occurrence of ASR. Besides the characteristics that refer to the potential reactivity, namely 
microcrystalline quartz, including myrmekite, sub-graining, deformed quartz exhibiting undulatory 
extinction, strain lamellae and ribbon quartz, the presence of K-feldspar, Na-plagioclase, perthite, 
alteration of the feldspars with formation of clay minerals and the process of alteration of biotite were 
registered. The occurrence of cracks was also considered an important factor as cracking is usually 
associated with the degree of alteration of the rocks, can improve the progression of the chemical 
reactions and increase the specific surface exposed to the interstitial fluids.  
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The aggregates analysed are mainly fine to medium-grained two mica granites, composed of quartz, 
K-feldspar, plagioclase (essentially albite, An0-10, and oligoclase, An10-30), muscovite and biotite, with 
variable contents of chlorite and other accessory minerals (Table 1).  

Table 1. Mineral composition of the aggregates obtained by point-counting.  

 

 

 

 

As can be observed from Table 1, quartz is the main component in three of the samples (the exception 
is GR29) and K-feldspar (26.3 to 32.9 %) is more abundant than plagioclase (19.5 to 26.1 %). The 
content of muscovite is higher than biotite + chlorite in GR2 and GR24 with a ratio of 3.1 and 2.4, 
respectively. Biotite + chlorite are slightly more abundant in GR23 and GR29. These results are in 
agreement with the bulk rock chemical composition (Table 2) which shows that the K2O content exceeds 
by 1.5 the Na2O content.  

Table 2. Chemical composition of the aggregates regarding alkalis. 

 GR2 GR23 GR24 GR29 

Na2O 2.81 3.00 2.99 3.26 

K2O 4.43 4.96 5.19 5.08 

K2O/ Na2O 1.58 1.65 1.74 1.56 

Na2Oeq 5.72 6.26 6.40 6.58 

 
Most of the selected aggregate samples contain the petrographic deformation features referred above 

that can imprint potential reactivity to these aggregates. Perthites, myrmekites and either undulation 
extinction or sub-granulation of quartz crystals are frequent. However, the samples showing more 
intense deformation are also those exhibiting deeper alteration. On the other hand, the altered fractions 
(A) are those that present a more intense cracking and a variable content of clay minerals. They are also 
more porous, therefore presenting a much higher specific surface for both quartz and feldspar to be 
exposed to the interstitial fluids.  

Figures 1 to 4 show some of the petrographic features observed in the granitic samples, namely the 
alteration of the feldspar crystals. In those figures the results of the image analysis are presented in which 
the alteration and cracking of the rocks are highlighted in shades of grey. In all the samples, plagioclase 
crystals show more intense alteration than K-feldspars crystals. In the zoned plagioclase crystals, the 
nucleus is altered to microcrystalline muscovite and, in some crystals of the samples GR23-A and GR29-
A, also calcite is formed. Biotite is partially to completely altered to chlorite. The darker areas of the 
images obtained by image analysis correspond to the argillization of the feldspars, showing the intensity 
of alteration of the plagioclase crystals whilst the K-feldspars are mainly crossed by cracks with minor 
presence of clay minerals. In the non-altered fraction (N) these characteristics are less evident that in the 
altered fraction (A). However, alteration in the cores of plagioclase crystals is visible even in the non-
altered fractions. 

 GR2 [3] GR23 GR24 GR29 

K-feldspar 26.3 29.9 31.4 32.9 

Plagioclase 26.1 19.5 20.3 24.6 

Quartz 34.2 34.4 33.7 32.7 

Muscovite 9.7 7.5 10.0 4.0 

Biotite + chlorite 3.1 8.1 4.1 5.7 

Accessory minerals 0.6 0.6 0.6 0.3 
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Figure 1. Aggregate GR2 containing fractured and altered plagioclase (pl) crystals, slightly altered K-
feldspar (K-fds) (photomicrographs obtained in crossed polarized light). Image analysis (below) 
highlights the differences in the degree of the alteration of plagioclase and K-feldspar crystals by 

different shades of grey. The darker areas are the ones presenting clay minerals and/or cracks 

 

Figure 2. Aggregate GR23 containing slightly altered K-feldspar (K-fds) and zoned, altered 
plagioclase (pl) crystals (photomicrographs obtained in crossed polarized light). Image analysis 

(below) highlights the differences in the degree of the alteration of K-feldspar and plagioclase crystals 
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Figure 3. Aggregate GR24 containing altered plagioclase (pl) crystals and K-feldspar (K-fds) 
(photomicrographs obtained in crossed polarized light). Image analysis (below) highlights the 

differences in the degree of the alteration of K-feldspar and plagioclase crystals 

 

Figure 4. Aggregate GR29, with perthitic K-feldspar (K-fds) and zoned, intensely altered and cracked 
plagioclase (pl) crystals. Plagioclase shows intense alteration to microcrystalline muscovite, mainly in 
the nucleus (photomicrographs obtained in crossed polarized light). Image analysis (below) shows that 

the alteration of plagioclase is more intense than of the K-feldspar crystals 
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Through the petrographic analysis it can be concluded that the aggregates show variable alteration 
evidences and grades. Aggregate GR2 is the least altered, even when the altered fraction is considered. 
There is light alteration in the cores of the plagioclase crystals and alteration is scarce for feldspar-K 
crystals. In GR2-A, the altered fraction, plagioclase (oligoclase) is more altered in the core and usually 
is more altered than the K-feldspars. 

The other aggregates show stronger manifestations of alteration which might be the deepest for 
GR29. The zonation of plagioclases is visible mainly in GR23 and GR29. Therefore, the nucleus of 
plagioclase crystals is marked by intense sericitization for both GR23-A and GR29-A.  

Based on the image analysis, the quantification of the areas of the samples showing alteration 
evidences is presented on Table 3, namely for ¾ of the percentages of altered areas of the crystals, for 
each type of feldspar considering the aggregate fractions separately. 

Table 3. Percentage of altered area of the feldspar crystals in the different aggregate’s fractions 
(N - non-altered rock; A - altered rock) 

Aggregate GR2 GR23 GR24 GR29 

Fraction N A N A N A N A 

K-feldspar 10% 13% 21% 27% 31% 35% 33% 39% 

Plagioclase 16% 21% 25% 33% 35% 40% 34% 48% 

 
From these results is possible to make a sequence of the aggregates regarding their degree of 

alteration. Aggregate GR2, as already concluded from the petrographic analysis, is the one with less 
evidences of alteration. It is followed by the GR23 that showed three out of the four fractions with less 
than 30% of altered crystals area. Aggregates GR24 and the GR29 are rated as the ones exhibiting the 
more intense alteration, although the GR29 has the highest values for all the fraction. 

3.2. Alkalis Release 
The results for the alkalis released after 26 weeks of testing are plotted in charts in Figures 5 and 6. 
Curves of the altered (A) and non-altered (N) fractions of the aggregates are presented showing the 
different behaviour of the aggregates in NaOH and KOH solutions. 

The analysis of these charts reveals that the altered fractions (A) release less alkalis than the non-
altered ones (N), although in the altered fractions there are more pores and cracks which might allow 
the access of the interstitial fluids to the interior of the aggregate particles.  

This result is explained by the fact that the minerals in the altered fractions have already lost K+ and 
Na+ during the alteration processes, indicating that the natural mechanisms of alteration have a stronger 
role in the releasable alkalis than the fact of the facilitated access of the interstitial fluids and the larger 
specific area available to the alkaline attack due to cracking. 

It can also be verified that the content of K2O released is higher than Na2O in all the samples. This 
fact can be due to the alteration degree observed in the petrographic analyses, which is more intense for 
the plagioclase crystals than for the K-feldspars in all the samples. In consequence, less sodium is 
available to be releasable during the alkaline attach. In addition, the results of alkalis released show a 
good correlation with the K-feldspar content obtained by petrographic point counting, which is usually 
higher than the plagioclase (Table 1). 

The lines in the charts also show that there is a dominant low positive trend in the evolution of the 
K2O release in the least altered aggregates (GR2 and GR23) whilst the lines are quite irregular for GR24 
and GR29, where the values for GR24 decrease from the first to the second assessment, increasing 
thereafter. GR29-N shows a high increase at the beginning of the test, decreasing in the 26th week of 
test. Only GR29-A follows the tendency shown for GR2 and GR23.  
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Figure 5. Na2O (%) and K2O (%) contents released with time by GR2 and GR23 aggregates in 
alkaline solutions (N – non-altered rock; A – altered rock) 

 

Figure 6. Na2O (%) and K2O (%) contents released with time by GR24 and GR29 aggregates in 
alkaline solutions (N – non-altered rock; A – altered rock) 

 
In what regards the Na2O, the least altered aggregates (GR2 and GR23) show variable evolution but 

it is interesting to notice that the altered fractions (GR2-A and GR23-A) follow parallel tendencies, 
initially with a clear increase followed by a decrease until de 26th week. This variable behaviour is 
thought to be associated with the compositional zoning of plagioclase, which is more evident for GR23-
A. This interpretation does not apply, however, to GR23-N with a very irregular evolution. For the 
aggregates showing the strongest alteration signs, the lines are also difficult to explain as for the altered 
fractions (GR24-A and GR29-A) there is a decrease in the Na2O content release, with a steady increase 
of GR29-A after the 2nd week, followed by a stabilization, and a positive trend for GR24-A. These 
tendencies are not reflected in the non-altered fractions of the same aggregates which show irregular 
evolution along the test period. The analysis of the curves in the four charts shows that the linear 
tendency observed for K2O, with higher release content for the non-altered fractions, cannot be totally 
extrapolated for the Na2O evolution.  

As example, the results at the 2nd week for GR2-A are higher than for GR2-N. In the analysis of the 
values of alkalis released it should be taken into account a possible precipitation with time of some 
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alkalis forming non-soluble alkaline gels. This situation will be confirmed at later ages, when these tests 
are finished. 

4. Conclusions 
The results obtained suggest that feldspars in granitic rocks can contribute to the development of ASR 
in concrete by releasing alkalis to the interstitial fluids, eventually exceeding the maximum content of 
alkalis considered in the national and international recommendations as the threshold to avoid the 
occurrence of reactions.  

Based on the petrographic examination of the thin sections and the image analysis it is possible to 
establish a qualitative classification of aggregates regarding the degree of alteration and cracking of the 
rocks. The features are observed mainly in the feldspar crystals, which can release alkalis to the fluids. 
Plagioclase is, in all the samples, more altered that the K-feldspar and the rocks are richer in K-feldspar 
than in plagioclase. Both these facts can explain the different behaviour found in the alkalis release tests 
carried out.  

It has been found that naturally altered aggregates have less capacity to release alkalis than the non-
altered aggregates since that the fractions that showed a higher grade of alteration correspond to the 
particles that release fewer alkalis. The granites tested showed a higher potassium release, which is 
attributed to the higher natural alteration of plagioclase in comparison to K-feldspars but also to the 
higher content of K-feldspars than plagioclase in these rocks. The rates of sodium release seem to reflect 
the compositional zoning of the plagioclase crystals. 
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