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Abstract 

This paper presents the analytical relationships of a non-linear model for the in-plane elastic-

plastic analysis of bi-symmetrical steel shapes bent about one of their main axes. The basic 

variables are the cross-section global deformations from which it is possible to evaluate the 

internal loads and the cross-section stiffness matrix components by means of simple 

expressions. Furthermore, the values of stresses and strains at any point of the cross-section may 

be determined knowing the values of the internal loads, in the elastic and elastic-plastic 

domains. The effects of progressive yielding spreading, as well as those of material strain-

hardening, are taken into account in the evaluation of the cross-section resistance capacity in the 

elastic-plastic domain. This analytical model represents an efficient, simple and accurate 

alternative to the elastic-plastic models based on numerical methods. 
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1. Introduction 

 Before reaching their ultimate limit states, most of steel structures present non-

linear behaviours. Therefore, an accurate analysis of such structures must take into 

account the most important factors related to these non-linearities. More, a realistic 

simulation of the elastic-plastic behaviour should allow the effects of the yielding 

spreading inside the cross-sections to be taken into account. 

 Usually, this type of analysis is carried out by means of numerical models, most 

of them being based on the finite element method, associated to a more or less fine 

meshing of the cross-sections into fibres or layers. Internal forces and stiffness matrix 

components are obtained by numerical integration, over the whole cross-section, of the 

average stress and stiffness of each elementary area, fibre or layer. However, this type 

of calculation is very heavy, and it requires a large number of data to be recorded during 

the iterations of the non-linear calculations. 

 Otherwise, the elastic-plastic analysis may be carried out by means of analytical 

cross-section models. These models are usually based on MN −  interaction curves 

under the hypothesis of perfect elastic-plastic behaviour, without strain hardening. 

 They are often written under the form: 
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 Although this type of expression is very common in practice, it presents several 

limitations regarding the actual material behaviour [1]. This paper presents an analytical 

formulation for the in-plane analysis of the elastic-plastic behaviour of bi-symmetrical 



Analytical formulation of the elastic-plastic behaviour of bi-symmetrical steel shapes 

 

 

 

 

 3/47 

cross-sections made of orthogonal rectangular elements (I-shaped cross-sections or 

rectangular hollow sections, for instance) in the case of bending about the strong or 

weak axis. 

 The general theoretical principles of this formulation are presented in [2,3,4]. The 

basic variables are the cross-section global deformations, from which it is possible to 

evaluate the internal loads and the cross-section stiffness matrix components, by means 

of simple mathematical expressions. These expressions cover all the possible 

combinations of deformation states in the elastic-plastic domain: yielding (in tension or 

compression) of one or two tips of the flanges, partial yielding of the section web, and 

total yielding of the cross-section. 

 The model allows the yielding spreading across the sections to be taken into 

account as well as the effects of the strain hardening on their resistance capacity. The 

bending/axial deformation interaction effects are considered and the cross section 

resistance may be limited by the deformation capacity of the material or, in other words, 

by its ductility. This characteristic allows the control of the cross-section ultimate limit 

states associated to this material property. 

 This model represents an efficient, simple and accurate alternative to the elastic-

plastic methods of analysis based on the numerical integration of stresses and stiffness 

over the cross-section. It may be useful to check some design requirements specified in 

modern Standards for the design of steel structures, such as Eurocode 3 [5] for instance. 

 In section “5.4 - Methods of analysis considering material non-linearities”, the 

EN 1993-1-1 Standard [5] allows the “non-linear plastic analysis considering the partial 

plastification of members in plastic zones”. It gives also some conditions for the use of 

plastic global analysis of steel structures, such as capacity of the members for sufficient 
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rotation or the stability of members at plastic hinges, which may be checked using this 

model. The analytical formulation explained in this paper establishes a relationship 

between the internal forces and the global deformations of the cross-sections, taking in 

account their geometric proportions and the effects of material hardening. Therefore, it 

allows a good evaluation of the structural members’ deformations and displacements, 

either in the elastic or elastic-plastic domains of behaviour, and, consequently, a better 

estimation of the stiffness and deformed geometry of the structure, that control its 

stability and serviceability limit states. 

2. Basic principles of the non-linear mechanical model 

 The evolution of the cross-section non-linear behaviour depends only on 

"behaviour factors" associated to its shape or to the constitutive law of its material. 

 The evaluation of the internal forces and stiffness matrix components depend on 

these “behaviour factors” and on "scale factors", such as the elastic modulus E , the 

yield stress yσ  or the dimensions of the cross-section, which allow the results to be 

expressed in a certain system of units. 

A more detailed explanation about the distinction between these behaviour and scale 

factors is given in section 4.2. 

 The behaviour of the material is represented by a bilinear stress-strain constitutive 

law )(f εσ = , identical for tension and compression (Fig. 1). The )(εσ  path is always 

the same, for loading and unloading, which means that the effects of elastic discharges 

during an unloading process are not taken into account. However, these effects have 

been found to be negligible during most of the monotonic loading processes [2], if the 
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stress reversal amplitude is not very large. On the other hand, this model is not suitable 

for the analysis of a structure under cyclic loading, induced by a seismic action for 

instance. Another situation, where this hypothesis may easily affect the results, is during 

a structural buckling process in the elastic-plastic domain; in this case, the results given 

by this model will be usually conservative. 

 All loads and their corresponding effects are limited to the plan of the structure. 

The behaviour of the structural elements depends only on the strains normal to their 

cross-sections. Each cross-section is bi-symmetrical regarding its two main axes, 

denoted u and v; the axis u is always the bending axis, whether it is the strong or the 

weak axis (Fig. 2). 

 The distribution of the cross-section strains is based on the Bernoulli's hypothesis 

that the cross-sections remain plane after deformation, in the elastic and in the elastic-

plastic domains (Fig. 2): 

( ) vv N χεε −=  (2) 

 The analytical expressions for the evaluation of the cross-section internal loads 

and stiffness matrix components are written as a function of reduced (non dimensional) 

variables, obtained from the division of the model variables by suitable scale factors: 
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where tE  is the tangent modulus of the material, E/yy σε =  is the yield strain, Mv  is 

the largest distance of the extreme fibres to the cross-section centroid along the v axis, 

ξ  is the reduced strain, ς  is the reduced stress, τ  is the reduced v co-ordinate, η  is the 

reduced axial deformation and µ  is the reduced curvature. 
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 In the space of the global deformations (µ, η), Eq. (2) may be written under the 

form of Eq. (4), which represents a straight line containing all the combinations of the 

global deformations (µ, η) that induce a reduced strain ξ(τ) in a cross-section elementary 

fibre with a τ  co-ordinate. 

µτητξ   -  = )( . (4) 

 Fig. 3 shows an example of the set of parallel straight lines, with a slope sτ =+1, 

containing the global deformations ( µ , η ) leading to upper fibre strains sξ  (Fig. 2) 

equal to the limits ξu , ξy , yξ  and uξ  between the domains of linear stress evolution 

(Fig. 1): elastic-plastic in compression (from ξu  to ξy ), elastic (from ξy to yξ ), and 

elastic-plastic in tension (from yξ  to uξ ). These parallel straight lines bound three ω  

deformation domains (Fig. 3) in which the stress evolution of the upper fibre is always 

of the same type: elastic-plastic in tension ep
sω , elastic el

sω , or elastic-plastic in 

compression s
ep ω . 

 The intersection between the ω  domains shown on Fig. 3 with those 

corresponding to the lower fibre of the section (where the iτ  slope is equal to -1), is 

represented on Fig. 4. 

 In the case of cross-sections without any shape discontinuities (rectangular or 

circular solid cross-sections for instance), the elementary zones defined by this 

intersection represent all the possible Ω  domains of evolution of the global 

deformations η  and µ , corresponding to all the possible combinations of elastic and 

yielded areas, in tension or compression, in the cross-section. Within each Ω  domain, 
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the ξ  strains at the extreme fibres are always in the same ω  domain. The )(f εσ =  

relationship being constant for each extreme fibre in each ω  domain, it is possible to 

get analytical expressions for the calculation of the cross-section internal forces and 

stiffness matrix components, which are unique within each Ω  domain [2]. 

 For cross-sections with discontinuous shapes (I, H or hollow shapes), the 

analytical integration of stresses in the section is obviously affected by these 

discontinuities. So, it is necessary to add to the diagram of Fig. 4, the parallel straight 

lines representing the limits of the ω  domains of the fibres at these discontinuities 

(web-flange discontinuities for instance). 

 Fig. 5 shows the additional parallel straight lines corresponding to the shape 

discontinuities in I-shape cross-sections. In this case, it is necessary to add two sets of 

straight lines, corresponding to the discontinuities between each flange and the web. 

 In the case of symmetrical cross-sections to both main axes of inertia, made of a 

material with a symmetrical behaviour in tension and compression, the domains of 

evolution of the global deformations (Fig. 5) are symmetrical to both axes η and µ, 

[2,3,4]. Therefore, only the first quadrant domains from Fig. 5, corresponding to the 

positive global deformations, need to be taken in account in the formulation of the 

cross-section behaviour. Therefore, the number of Ω  domains shown on this figure 

may be reduced from 27 to 9. Fig. 6 represents these 9 domains and their numbering, in 

order to make their identification easier. 

 In the other domains, the calculation of the internal loads and stiffness matrix 

components may be achieved with the absolute values of η and µ, the right sign being 
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attributed to the results according to the real signs of η and µ. An example of 

application will be presented later to show this procedure. 

3. Formulation of the analytical model 

The analytical formulation of the cross-section internal forces and stiffness 

matrix components is carried out in a system of reduced variables. The reduced axial 

load n  and bending moment m  are expressed by Eqs. (5)-(6). 

ε yy
y

 A E = N    , 
N

N
 = n ;  (5) 

v
 =     ,  I E = M    , 

M

M
 = m

M

y

yyy

y

εχχ .  (6) 

 The expressions relating the components of the tangent stiffness matrix [H], 

Eq. (7), with those of the reduced stiffness matrix [h], Eq. (8), are defined by Eqs. (9a)-

(9d). 
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hEI = h
m

M
 = H 222222 χ∂

µ∂
∂
∂

.  (9d) 

 The cross-section geometry may be characterised by the following reduced 

parameters: 

'b

"b
b =α , (10) 

'h

"h
h =α . (11) 

The dimensions h’, h”, b’ and b” are defined in Fig. 7 for I-shapes bent about 

their strong or weak axis and for rectangular hollow sections. When bending occurs 

over its strong axis, the shape is denoted I-shape. When it is bent about its weak axis, it 

is denoted H-shape. Any type of these cross-sections may be obtained by the addition or 

the subtraction of two rectangles, R' (b’×h’) and R" (b"×h"). 

The area A of the steel cross-section is "A'AA += , where 'h'b'A = and 

"h"b"A −= , in the case of a hollow section or an I-shape, or 'h'b'A = and "h"b"A =  

in the case of a H-shape. Furthermore, the ratio A'/A may be expressed by: 

Ak'A''A''A'A
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In the case of a hollow section or an I-shape hbAk αα−= , and in the case of a H-

shape hbAk αα= . 
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The second moment of inertia, I, is ''I'II += , where 123'h'b'I =  and 

123"h"b"I −= , in the case of a hollow section or an I-shape, or 123'h'b'I =  and 

123"h"b"I =  in the case a H-shape. Furthermore, the ratio I'/I may be expressed by: 

Ik'I"I"I'I
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+
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1

1

1
, (14)  

and the ratio I"/I by: 
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In the case of a hollow section or an I-shape AhhbI kk
23 α=αα−= , and in the 

case of a H-shape AhhbI kk
23 α=αα= . 

The steel cross-section and the two rectangles, R' and R", have the same centroid 

and they are submitted to the same strain distribution. So, the axial deformation Nε  is 

the same for these three sections. Therefore, the reduced axial deformations 'η  and "η  

are equal to the reduced axial deformation η  of the steel cross-section. 

The reduced curvature 'µ  of R' is equal to the reduced curvature of the steel 

cross-section µ , since h' is equal to its height (measured along the axis v). On the other 

hand, the reduced curvature "µ , calculated according to Eq. (2), is related to µ  by the 

following relationship: 

µα=µ=µ=
ε
χ

=µ h
y 'h
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"h"h
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22
. (16) 
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According to the previous definitions expressed by Eqs. (5)-(9), and to the 

geometrical relationships given by Eqs. (10)-(15), the axial load, bending moment and 

stiffness matrix components may be calculated by the following expressions: 
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 The reduced internal forces (n and m) and the stiffness matrix components (h11, 

h12, h21 and h22) of the two rectangles R' and R" may be evaluated by means of 

analytical expressions presented in [2]. These relationships represent the simplified 

version of a general analytical model developed for rectangular cross-sections made of a 

material with any constitutive law, approached by a multilinear function ( )εσ f=  [2]. 
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 From the former relationships (5)-(9), and the above mentioned analytical 

expressions, the calculation of the steel cross-section reduced internal forces and 

stiffness matrix components, for each Ω  domain (Fig. 6), may be written according to 

Eqs. (20)-(53d). The limits of each Ω  domain may be defined as a function of the 

strains at specific points (external and internal extreme fibres of the flanges (Fig. 5): 

µ−η=ξs ; µα−η=ξ h
S ; µα+η=ξ h

I ; µ+η=ξi . The symbol (E) indicates an 

elastic behaviour, (T) represents yielding in tension and (C) yielding in compression. 

Domain � (Fig. 8): 11 ≤ξ≤− s  (E); 11 ≤ξ≤− S  (E); 11 ≤ξ≤− I  (E); 11 ≤ξ≤− i  (E) (20) 

Internal forces: 

µη  = m    ;     = n . (21) 

Stiffness matrix components: 

0 = h = h    ;    1 = h = h 21122211 . (22) 

Domain � (Fig. 9): 11 ≤ξ≤− s  (E); 11 ≤ξ≤− S  (E); 11 ≤ξ≤− I  (E); 1>ξi  (T) (23) 

Internal forces: 
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Stiffness matrix components: 
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Domain � (Fig. 10): 1−<ξs  (C); 11 ≤ξ≤− S  (E); 11 ≤ξ≤− I  (E); 1>ξi  (T) (27) 

Internal forces: 
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Stiffness matrix components: 
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Domain � (Fig. 11): 1≥ξs  (T); 1≥ξS  (T); 1≥ξI  (T); 1≥ξi  (T) (31) 

Internal forces: 

µγηγη  ) -(1 = m        , 1)-(  -  = n . (32) 

Stiffness matrix components: 

0 = h = h         ,  -1 = h = h 21122211 γ . (33) 

Domain � (Fig. 12): 11 ≤ξ≤− s  (E); 1>ξS  (T); 1>ξI  (T); 1>ξi  (T) (34) 

Internal forces: 
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Stiffness matrix components: 
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Domain � (Fig. 13): 1−<ξs  (C); 1>ξS  (T); 1>ξI  (T); 1>ξi  (T) (38) 

Internal forces: 

( ) ( )







ηγη+−µ

µ
η

γ−η
+

= 1)-(  - k
k

n A
A

1
1

1
. (39) 

( )













µγ−+











µ

+η
+−µγ−µ

+
= 1

2

13

2

3

1

1
2

2

I
I

k
k

m . (40) 

Stiffness matrix components: 
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Domain � (Fig. 14): 11 ≤ξ≤− s  (E); 11 ≤ξ≤− S  (E); 1>ξI  (T); 1>ξi  (T) (42) 

Internal forces: 
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( ) ( ) 
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
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Stiffness matrix components: 
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Domain � (Fig. 15): 1−<ξs  (C); 11 ≤ξ≤− S  (E); 1>ξI  (T); 1>ξi  (T) (46) 

Internal forces: 
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Stiffness matrix components: 

( ) ( ) 

















−η+µα

µα
γ

−+−µ
µ
γ

−
+

= 1
2

111
1

1
11 h

h
A

A

k
k

h , (49a) 

( ) ( ) 

















+−−++

+
−= 11

4

1

1 22212
ηµαηµα

µα
α

µ
ηγ

hh

h

Ah

A

k
k

h , (49b) 

( ) ( )
























+η−µα−η+µα

µαα
+

µ

η
+
γ

−= 11
4

33

1 22221 hh

hh

I

I

k

k
h , (49c) 







+











µ

+η
−γ−

+
= ...

k
h

I
3

2

22

13
11

1

1

( ) ( )( )
































µα

+η−µα−η
−−η+µα

µα
γ

−+
22

11
11

2
1

h

h
h

h
Ik... . (49d) 

Domain 	 (Fig. 16): 1−<ξs  (C); 1−≤ξS  (C); 1>ξI  (T); 1>ξi  (T) (50) 

Internal forces: 
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Stiffness matrix components: 
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4. Comparison with classical numerical methods 

4.1. Interest of this analytical approach 

 First of all, it should be emphasised that this analytical model has been developed 

in order to be integrated in a computer program for non linear analysis of steel 

structures. 

 Generally, this kind of software is based on the displacement method. Using the 

compatibility conditions between the cinematic variables of the problem, it is possible 

to calculate the section deformations after the structure displacements. 
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 To evaluate the yielding spreading in a cross-section by means of classical 

numerical methods, it is necessary to mesh each cross-section into several elementary 

layers or fibres. The precision of the results and, consequently, the good convergence of 

the non linear procedure, depend on the mesh refinement which, on the other hand, may 

lead to very heavy calculations. 

 The average strain ε  in each fibre or layer need to be determined from the global 

deformations Nε  and χ. Then, the average stress σ  and the stiffness ratios must be 

calculated using the material constitutive law. Finally, the internal forces and stiffness 

matrix components should be obtained in the whole section by numerical integration of 

the stresses and stiffness ratios along the whole cross-sections. 

 This is a very heavy and long process when great deals of cross-sections need to 

be analysed, since a large number of deformed states need to be calculated along the 

non linear behaviour of the structure. 

 Using the proposed analytical model, the numerical integration procedure is no 

longer required since it is based on relationships that have been established after a 

former analytical integration. So, only simple calculations are needed to determine the 

cross-section internal loads and stiffness matrix components after its global deformation 

values. 

4.2. Use of the reduced variables 

 The main interest to use reduced variables lies on the separation of the physical 

phenomena from the numerical quantification of the model variables associated to a 

specified system of units. 
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The reduced variables result from the division of these model variables by suitable 

“scale factors”, and their variations depend on “behaviour factors”, which control the 

evolution of the cross-section in the elastic and elastic-plastic domains. In order to 

clarify the meaning of these factors, let us consider the following example: 

 An American wide flange beam W610×230×113, according to the ASTM A6-05 

standard, is submitted to an axial force N = 2537.5 kN and to a bending moment 

M = 216.04 kN.m. The cross-section area of this shape is A = 14500 mm
2
 and its elastic 

section modulus is Wel = 2881×10
3
 mm

3
. The yield strength of the constitutive material 

is σy = 250 N/mm
2
. 

 These values may be meaningless for those who are not familiar with the SI Unit 

System. In USA, for example, the values of the same variables would be 

N = 570.45 kip, M = 159.35 kip.ft, A = 22.475 in
2
, Wel = 175.8 8 in

3
 and σy = 36.3 ksi. 

These numerical values are rather different from the previous ones, that means that the 

perception of their physical meaning will be totally different, depending on the Unit 

System applied. 

 If the internal forces are expressed in reduced variables, according to Eqs. (5)-(6), 

the obtained values are: 

• with the SI units: 

( ) ( ) ( ) 70250145002537500 .ANEANNNn yyy =×==== σε  

( ) ( ) ( ) 302501028811004216 36 ..WMvEIMMMm yelMyy =×××==== σε  

• with the American units: 

( ) ( ) ( ) 703630047522570450 ..ANEANNNn yyy =×==== σε  

( ) ( ) ( ) 3036300817512159350 ..WMvEIMMMm yelMyy =××==== σε  
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 These results show that the values of the reduced variables allow a common 

understanding to all users whatever the unit system is. 

 Furthermore, the physical meaning of these variables is more explicit than in the 

case of dimensional variables. For instance, if a European engineer knows that the axial 

force in a W610×230×113 profile is N = 2537.5 kN, this value is not significant for him 

if he is not familiar with the characteristics of American wide flange beams. 

 On the other hand, if he knows that the reduced value is n = 0.7, he understands 

immediately that the cross section is submitted to an axial force equal to 70% of its 

yielding load Ny, under pure axial loading. 

Moreover, the values of the reduced internal forces may give some additional physical 

information. If Eqs. (21) and (4) are used, it is easy to conclude that the reduced strain 

in the lower fibre is ξi 
= 0.7+0.3 = 1.0, which means that the stress in this fibre is equal 

to σy and, therefore, the cross-section is at its elastic limit state. The reduced strain at the 

upper fibre is ξi 
= 0.7 - 0.3 = 0.4, which means that the corresponding stress is equal to 

40% of the yield strength, σy. 

 The Ny factor, as well as the My factor representing the largest moment in simple 

bending when the elastic limit of the cross-section is reached, are two examples of the 

“scale factors” mentioned above. It should be noted that scale factors may be evaluated 

after the values of other factors. The values of Ny and My, for example, may be obtained 

from those of σy, A and Wel, which, on their turn, may be obtained from the values of E 

and εy, and from the cross-section dimensions b’, b’’, h’ and h’’ (Fig. 7). 

 In the elastic domain, the relationship between the reduced cross-section global 

deformations and the internal forces or stiffness matrix components is brought down to 
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its simplest form, as shown in Eqs. (20)-(21), due to the constant linear relationship 

given by Hooke’s law, σ = Eε, which may be also be written under the following 

reduced form, ζ = ξ. 

 On the other hand, this linear ratio is no longer valid for the whole cross-section in 

the elastic-plastic domains, and the relations between the internal forces or stiffness 

matrix components and the cross-section global deformations depend on “behaviour 

factors”, which reflect the effects of the cross-section geometrical and physical 

discontinuities on its non linear behaviour. 

 In this model, the main behaviour factors related to the cross-section geometry are 

the variables αb and αh, Eqs. (10) and (11), which are related to the width to thickness 

ratio of the cross section web and flanges. The other geometrical behaviour factors are 

the variables kA and kI, which may be evaluated after the values of αb and αh. The 

behaviour factor related to the non linear response of the material is the variable γ, 

which relates the tangent modulus of the material in the plastic domain, tE , with the 

Young’s modulus E in the elastic domain, Eq. (3). 

4.3. Example of calculation for cross-section elastic-plastic behaviour 

 This example aims to demonstrate the simplicity of application of the proposed 

analytical formulation. It concerns a HEB 220 cross-section bent about its strong axis, 

whose geometrical characteristics and reduced parameters bα  and hα  are: 

mm 220=h , mm 220=b , mm 16= t f , mm59  .tw = , 2mm 9104=A , 

44 mm108091  I y ×= , 95600. =αb , 84920.= αh , 81190.kA −=  and 0.5855−=Ik . It is 

made from S235 steel grade with 2kN/mm210 E = , no strain hardening, 0=tE ( 1=γ ), 
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and 2N/mm235=yσ  (so 310121 −×=ε .y ). The ultimate strain uε  has been chosen 

equal to 310224200 −×=ε y .
 

 In this example, the reduced global deformations are chosen equal to 020.−=η  

and 051.=µ . As mentioned before, the calculations will be carried out with the 

absolute values of these variables. According to Eq. (4), it comes: -1.03= sξ ; 

0.8717- = Sξ ; 91170.= Iξ ; 071.= iξ . 

 According to Eq. (27), the cross-section is within domain �. Therefore, the 

reduced internal forces will be evaluated using Eqs. (28)-(29). The corresponding 

dimensional values are obtained by multiplying the reduced variables by the relevant 

scale factors. 

( ) 014940020811901051
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020
020

811901

1
....

.

.
.

.
n =




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 ×−−−
−

= , 

and: kN9631101219104210000014940 3 ...AEnNnN yy =××××=== −ε . 
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=



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


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


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×
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−
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110

10121
1080912100000401

3
4 .

.
.

z
IEmMmM

M

y

yy =
×

××××===
−ε

. 

 The axial deformation η being negative, the real value of the axial force is 

kN9631.N −= . This example shows the simplicity of the calculations in the elastic-

plastic domains, which allows the needs for memory and computation time to be 

considerably reduced when compared to those of classical numerical integration 

processes with fibres or layers models. 
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 The evaluation of the stiffness matrix components may be carried out following 

the same procedure using Eqs. (30). Nevertheless, it must be emphasised that, if the 

curvature has a different sign from the one of the axial deformation, the signs of the 

stiffness components H12 and H21 have to be changed. 

5. Use of internal forces as basic variables 

5.1. Application to a classical cross-section check 

 As mentioned before, this analytical model has been developed to be used as a 

subroutine in a computer program, based on the finite element technique, for the non-

linear analysis of steel structures [3]. Its formulation uses the displacements method, the 

cross-sections internal loads and stiffness matrix components being evaluated as a 

function of the global deformations (η and µ) compatible to the displacements applied 

to the structure. Since η and µ are the basic variables, it is not always possible to make a 

direct use of the model analytical expressions in the verification of the cross-section 

safety to a combination of internal loads (axial force n and bending moment m) in the 

elastic-plastic-domain. 

 Nevertheless, although the verification of the cross-sections was not the aim of 

this analytical model, it may still be used in two different ways. The one used here 

consists in the resolution of the previous analytical relationships as a function of the 

variables to be calculated. The other one is based on a numerical resolution of the same 

equations by an iteration procedure [1]. 
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5.2. Example of application 

 This example concerns the same HEB 220 cross-section described in section 4.2 

made, in this case, of a S275 steel grade with 2kN/mm 210=E , 2N/mm 850=tE  

( 99590.=γ ), 2N/mm275=σy  (so 310311 −×=ε .y ). The ultimate strain uε  has been 

chosen equal to -310200× , which means that 7152.u =ξ . 

 This section is submitted to an axial force kN2500 -N =  and a bending moment 

kN.m 14=M . The corresponding reduced values according to Eqs. (5)-(6) are 

99860.n =  and 06920.m = . 

 According to Eq. (20), the cross-section is in its elastic domain if 1≤+ µη . In 

this case, n=η , Eq. (21), and m=µ , Eq. (22). So, the cross-section remains elastic 

when the condition 1≤+ mn  is respected. 

 In this case, 106781 >=+ .mn , so the section is no longer in its elastic domain. 

It may be noted that the cross-section would be able to bear these internal forces in the 

elastic domain if its yield stress would be greater than 2N/mm29406781 =σ× y. , which 

would be the case if it was made of a S355 steel grade ( 2N/mm355=σy ). 

 As the cross-section is not in the elastic domain, it is necessary to find the elastic-

plastic domain Ω where it lies. This search is quite easy when the reduced global 

deformations (η  and µ) are known, by using the equations that define the frontiers 

between the Ω domains (Eqs. (23), (27), (31), etc.). In this case, only the internal forces 

are known, so the reduced values of the deformations are needed before the check of the 

Ω domains. 
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 The easiest situation is the one where the whole cross-section is totally yielded, 

under the predominant action of an axial load (domain �). This situation exists when 

1≥ξs  which means that 1≥µ−η , Eq. (31). According to Eq. (32), this condition may 

also be written under the form ( ) γ−≥−γ−=µ−η 1mn , which may also be written 

as 1≥− mn . 

 In this case, 192930 <=− .mn , so the section is not in the domain �. It may 

also be noted that the cross-section would be in the domain � if its yield stress would 

be smaller than 2N/mm25592930 =× y. σ , which would be the case if it was made of a 

S235 steel grade ( 2N/mm235=σy ). 

 Nevertheless, the value of 92930.mn =−  is quite close to 1 which means that 

the cross section is probably in a domain Ω close to the domain �. The closest one is 

the domain � (Fig. 6), so this domain is the next one to be checked. 

 If the values of 0.9986=n , 06920.m = , 0.9959 =γ , 81190.kA −=  and 

58550.kI −=  are introduced in Eqs. (35)-(36), a system of two equations is obtained 

where the variables are η  and µ . The solving of this system gives three set of solutions 

for these variables: 

00001061.=η  and 71002281 −×=µ . , 

072168.=η  and 681396.=µ , 

896267.=η  and 299847.=µ . 
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 If any of these solutions is within the domain �, it should verify the conditions 

stated by Eq. (34). The first of these conditions is 11 ≤ξ≤− s , or 11 ≤µ−η≤− . 

Solution a) does not respect this condition since 100001051 >=µ−η . . Solution b) 

gives 1390771 >=µ−η .  which does not respect the same condition. So, these two 

solutions are not valid since they have been calculated by Eqs. (35)-(36), which are 

applicable only in the domain �, and these solutions are not within this domain. 

 On the other hand, in the case of solution c), the above condition is respected 

( 1596410 <=µ−η . ). Still, the other three conditions from Eq. (34) need also to be 

verified. The second condition, 16971 >=µα−η=ξ .h
S , is also verified meaning that 

this solution is in the domain � or in the domain � (Fig. 6). In this case, the third 

condition ( 1>µα+η=ξ h
I ) needs not to be checked since it is always verified when 

the second condition is respected. 

 The forth condition 119615 >=µ+η=ξ .i  is also verified which means that this 

solution c) is in the domain � and not in the domain � (Fig. 6). Since the four 

conditions from Eq. (34) are satisfied, it is sure that the correct solution has been found 

and the cross-section is within the domain �. If not, it would have been necessary to 

repeat the same process for each one of the other domains until the correct solution is 

found. This process may appear rather complicated but it may be easily accomplished 

by the use of a spreadsheet, for instance. 

 The correct sign of the deformations must now be chosen. Since the axial force is 

negative, the correct value of the reduced axial deformation will be 89637.−=η ; as the 

bending moment is positive, the curvature is in fact 29987.=µ . 
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 Finally, it is necessary to check if the material of the cross-section is able to stand 

these internal forces and deformations without failure. The absolute value of the 

maximum strain in the material is 196115.=µ+η . Since this value is smaller than the 

ultimate reduced strain of the material 7152.u =ξ , the cross-section did not reach this 

ultimate state and the cross-section is able to support the given internal loads and the 

corresponding deformations. 

 It should be emphasised that these calculations have been carried out considering 

the influence of strain hardening of the material. If no strain hardening is considered, the 

cross-section will not be able to bear the given internal loads. 

 In this case, only a higher steel grade would allow the same cross-section to reach 

the required resistance. If for instance a S355 steel grade is used, the new reduced 

values of the internal forces are 77350.n =  and 05360.m =  leading the cross-section to 

be in the elastic domain �. The reduced deformations are then 77350.=η  and 

05360.=µ . 

6. Conclusions 

The formulation of an analytical elastic-plastic mechanical model is presented in 

this paper to study steel cross sections bent about their main axes (strong or weak axis). 

At first, the basic principles of the formulation are presented; they are based on 

the analysis of the cross-section global deformations. Then, the application to industrial 

shapes is explained. 

Next, the formulation of the analytical model is presented in detail, allowing 

internal forces and stiffness matrix components to be evaluated after the global 
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deformations. The domains of application of the analytical expressions, corresponding 

to different yielding states of the section, are clearly put in evidence. 

Some examples of calculations are provided for traditional hot-rolled sections. 

The first example emphasises the simplicity of the application of this model in its basic 

configuration (when the basic variables are the global deformations of the cross-

section). The other examples show that this model may also be used to evaluate the 

behaviour of a cross-section as a function of the internal forces in the elastic and elastic-

plastic domains. 

This model allows the progressive yielding spreading in the cross-sections to be 

taken into account. It also integrates the effects of strain hardening on the resistance of 

cross-sections in the elastic-plastic domain, as well as the restrictions due to the 

maximum deformation capacity of the material. 

It constitutes an efficient, simple and accurate alternative to the numerical models 

requiring numerical integration over the cross-section meshed into elementary fibres or 

layers. 
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Figure 1 - Material constitutive law 
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Figure 2 - Definition of strains for different types of cross-sections 
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Figure 3 - Deformation domains ω of the cross-section upper fibre 
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Figure 4 - Domains of evolution of the global deformations  

in a rectangular cross-section 
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Figure 5 - Domains of evolution of the global deformations in an I-shape 
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Figure 6 - Domains in the first quadrant of the global deformations for an I-shape 
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Figure 7 - Main dimensions of I-shapes and rectangular hollow sections 
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Figure 8 - Strain and stress diagrams in domain ①. 
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Figure 9 - Strain and stress diagrams in domain ② 
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Figure 10 - Strain and stress diagrams in domain ③ 
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Figure 11 - Strain and stress diagrams in domain ④ 
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Figure 12 - Strain and stress diagrams in domain ⑤ 
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Figure 13 - Strain and stress diagrams in domain ⑥ 
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Figure 14 - Strain and stress diagrams in domain ⑦ 
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Figure 15 - Strain and stress diagrams in domain ⑧ 
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Figure 16 - Strain and stress diagrams in domain ⑨ 

 

 


