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Abstract
The design, implementation and demonstration obwehand generic computational forecast

framework for multi-scale prediction of extreme $e2els and associated flooding is presented.
Denoted Water Information Forecast Framework (W]HHntegrates process-based models for
waves, tides and surges from regional to localesgglredicting the flooding of coastal areas, and
supporting the routine and emergency managememoastal resources. WIFF manages the
simulations and the real-time monitoring data, meh the data and makes the information
available through a WebGIS that targets users digtinct access privileges. Additionally, the
web component of WIFF adapts automatically andsparently to any device. WIFF also
provides ways to assess the model accuracy andagesdailored products based on model
results and observations. WIFF is demonstratethenprediction of extreme water levels in the
Portuguese coast, simulating processes at diffecaiés: at basin scales, waves are simulated in
the North Atlantic and in the Portuguese shelf, aed levels due to tides and atmospheric
forcings are simulated in the North-east Atlantt; estuarine scales, high-resolution, fully
coupled wave/circulation predictions are perfornmedhe Tagus estuary to account for wave-
current interactions. User-oriented georeferencextiycts are generated, including automatic
model/data comparisons, targeting the needs dfmigtection agents and combining for the first
time an agile, service-oriented platform with higisolution, process-rich predictions of the
Tagus dynamics.

Keywords: Forecast systems; WebGIS; real-time informaticaamework; Portuguese shelf;
Tagus estuary; storm surge.

1. Introduction

Many coastal zones in the world are at a high ofskooding. On the one hand, these areas are

usually densely populated, hence particularly widhke to extreme events; on the other hand,

coastal areas are often low-lying lands, exposediés, storm surges and waves. Climate change

further aggravates the flood hazard through seal lese and the increase of the intensity and
3
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frequency of extreme events. This risk is illugthby several catastrophic events in the last
decade, such as the 2005 hurricane Katrina (Diregi@l. 2011), and the 2010 Xynthia (Bertin et
al. 2012; Liberato et al. 2013), and 2014 Herc(@sstelle et al. 2015) storms.

Wauves, tides and surges have been successfullyasedun the past few decades using process-
based models (e.g. Dodet et al. 2010, Dietrich. (4.1, Bertin et al. 2012), taking advantage of
increasingly faster computational resources. Iremégears, the need to provide the information
required to initiate preventive and emergency actibas triggered the development of dedicated
forecast systems to predict the occurrence of medreevents (Bajo and Umgiesser 2010;
Dresback et al. 2013, Zhang et al. 2013, Gallies.€2013). As coastal flooding events typically
result from large-scale phenomena propagating ftbenocean to localized coastal areas, a
modeling approach that covers multiple spatial excand distinct processes is required. As a
result, the large computational resources necessamovide accurate and timely early-warnings
of extreme events have fostered the use of higfoqmeance computing (HPC) environments,

such as computer clusters (Ramakrishnan et al.; Rdgeiro et al. 2015).

Recent developments in Information Technology (ISuch as communication networks,
Geographic Information Systems (GIS) and decisigipsrt systems, are also enhancing disaster
management and communications. In recent yearsy mab-based emergency response systems
have been developed (e.g., the Global Disaster tAland Coordination System,
http://lwww.gdacs.org/; and the Global Disaster infation Network http://www.gdin.org) with
increasingly complex designs (Kyng et al. 2006)hédtexamples with complex software
architectures, integrating GIS, web-based spat#hlzhses (Herold et al. 2005) and providing
authenticated users access to targeted informatiedlemand (Kulkarni et al. 2014), have also
been proposed. IT solutions integrating processdbanodels have therefore an enormous
potential to transform coastal zone managementdwiging accurate and autonomously updated
information. In particular, web platforms combinimltiple access levels to different hierarchic
roles, with the capacity to adapt to specific usges without significant code changes, constitute
a major contribution to sustainable coastal zon@agament, and will probably continue to
evolve in the near future (Gomes et al. 2015).
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Forecast information systems are fundamental coemsrof emergency response systems. They
are now emerging as operational tools for the mamagt of harbors and marine resources
(Daniel et al. 2004; Baptista 2006, Anselmi-Molie& al. 2012; Chandrasekar et al. 2012;
Wernera et al. 2013), by providing precise and lynpeedictions on water conditions. Forecast
systems integrate remote monitoring networks, Hesources (due to demanding computation
processes), either for short-term forecasting aultemg data processing, and web-based

information systems to support management decigBaptista et al. 2015).

The balance between the need to provide timelytsakand the adequate spatial and temporal
resolution for reliable water predictions motivathe search for an optimal forecast setup, from

both modeling and infrastructures viewpoints. Besidequate water process representation,
computational requirements for water forecastsumhelthe need to scale up to multiple spatial

scales and the time for forecasts to be available.

Building on these experiences, a web-accessihteeinaork denoted as WIFF (Water Information
Forecast Framework) has recently been developpbtade access to real-time observations and
model predictions to decision-makers, constitutitghe same time a repository of historical
information (Jesus et al. 2012, Oliveira et al. £0Herein, this concept is extended to flood
forecasting, seamlessly integrating high-resolutimdels across processes (waves, tides, storm
surges) and spatial scales (from regional to lpcalnbined with an innovative, responsive, real-
time information web interface for enhanced suppomiflood risk emergency in estuarine areas,
targeting multiple users with distinct access peiyes.

The framework is demonstrated in the integratedlipten of extreme water levels in the
Portuguese coast and the Tagus estuary. The prianaryf this deployment is to provide the
civil protection authorities with all the informat required to anticipate and react to flood events
along the margins of the Tagus estuary, focusindglaoding originating from the sea. Besides
the forecast platform described herein, addition&rmation such as vulnerability and risk
indexes were also implemented in the WIFF WebGl&riace (Tavares et al. 2015, Gomes et al.
2015).
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This paper is organized as follows. The genericmaational forecast framework is described
first, including the requirements, the infrastruetand the technological choices for the WebGIS
interface. The functionalities of the framework #nen illustrated through an application to the
Portuguese coast. The deployment involves the mmgh¢ation and validation of the operational
models: a regional wave model of the North Atlamtith a nested grid on the Portuguese shelf, a
tide and surge model of the Northeast Atlantic, andoupled wave-circulation model of the

Tagus estuary. Finally, some challenges assocwtbdhis type of systems are discussed.

2. Methodology and implementation

2.1 Requirements
The real-time information forecast framework WIFR&a to support flood risk management in

coastal areas, targeting multiple users with distiraccess privileges. Therefore, its
conceptualization was based on a user’s requiresmamdlysis targeting all potential users and

purposes. The following user requirements weretified:

» web access to relevant georeferenced informatiom fwvireless sensors, high-resolution
forecasts and comprehensive risk analysis;

» fast and automatic adaptation to different devices;

» user-dependent access to data and products;

» portability to other coastal and urban systems.

The next two sub-sections present the framewonkésall architecture and the forecast modeling
infrastructure.

2.2.The Water Information Forecast Framework
WIFF aims to provide on-line, intuitive and georefeced access to real-time observations and

model predictions, as well as on-demand servicesupport of routine management of coastal
resources and harbor operations. SimultaneouslyPAfirovides a repository of historical

information, available at each deployment siteh®relevant end-users. Originally conceived for
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a single user type, the WIFF's WebGIS now allows Users with different access privileges,

following the requirement analysis summarized above

The framework is composed by two distinct partg@Fe 1): the back-end, executed by the
server, runs the simulations and retrieves, preseasd stores the observations and the model
results; the front-end, executed by the clientewser, interacts with the end-user and displays
the information made available by the back-end. Thent-server architecture enforces the
separation of concerns in the two components ofsgfgtem, making them simpler and more
robust since each one only has to worry about wa duties. Also, each component can be
replaced and developed independently, as longeamtrface between them is not altered. This
interface uses Representational State Transfer TRB@b-services, a set of principles which
separates the communication protocols from therant®n between clients and servers. The
replies to the requests from the front-end to thekbend are wrapped in JavaScript Object
Notation (JSON), a format to exchange informatioat is easy to read and write by humans and

easy to analyze by computers.
[Figure 1 near here]

The back-end is composed by a deployment of CakeRHMModel-view-controller PHP
framework. It has a PostgreSQL database, usingGP®sextension to interpret geographical
data, coupled with several instances of GeoSearat,some Perl and Python scripts. The PHP
code manages the control and user access to thelelatered to the front-end and connects the
different components of the back-end. The GeoSgemlreropen source map server that allows
users to publish geospatial information using opsiandards, manages and delivers
georeferenced images in normalized formats (e.ggb Wlap Service — WMS), so that this
information can easily be used by different cliefitsis geospatial map server offers vector and
timed data, stored in PostgreSQL/PostGIS databasdsin shapefile format files, thereby
allowing the exploitation of the model results iregt detail (e.g., through the extraction of time
series in selected points by the user in the Weh@ti&face or the display of non-pixelated

layers).
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The front-end consists of a web application, adaptto different types of devices, which allows
the user to visualize and interact with the resuigsle available by the back-end in a simple and
intuitive interface. The adaptation of the platforondevices with a lower processing capability,
such as smartphones and tablets, requires the fusiialent web technologies: HTML5 and
CSS3, the bases of all modern web applicationsukmdS, a javascript framework that offers a
templating and two-way data binding dynamic syst&uapgle Polymer, an implementation of
visual design patterns; and OpenLayers, a libraay &llows the manipulation of georeferenced

information and supplies tools to handle maps ftbhenclient side.

Because emergency response requires swift decisiensapid display of information to the end-
users is a stringent requirement for forecast systeuch as WIFF. To address this requirement
with limited computational resources, WIFF's Geo&ercaches all map layers, through an
integrated GeoWebCache, coupled with pre-seedirigeo€ontent at the moment of its creation.
This approach allows the server to have the cortieaady rendered, ready to be delivered to the
user with minimal CPU usage. GeoWebCache is a dabaapplication used to cache map tiles
coming from a variety of sources, such as OGC Waelp [8ervice (WMS) compliant servers
(such as the GeoServer). It implements variousicemterfaces (such as WMS-C, WMTS,
TMS, Google Maps KML, Virtual Earth) in order tocaterate and optimize map image delivery.
It runs as a proxy between a map client applicatiott a map server, caching (storing) tiles on-
demand or pre-seeded, eliminating redundant requesessing and thus drastically reducing

processing time.

2.3.Modeling infrastructure
The forecast modeling infrastructure used hereigirated from the Rapid Deployment Forecast

System (RDFS — Baptista 2006), a generic foreaggilatform, adaptable to any geographical
location. The original RDFS was extended to wateality (David et al. 2013) and waves,
integrated in a WebGIS tailored for coastal appilces (Jesus et al. 2012) and extended to risk
analysis (Oliveira et al. 2014). The forecast gysietegrates a set of wave, circulation and water

quality models that run periodically in HPC envinoents to generate forecasts of water levels,
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currents, water temperatures, salinity, waves afetted water quality indicators for target areas.

For the particular case of flooding, only wave airdulation models are used.

While flooding occurs at small spatial scales,tiiggering events can be generated in large
oceanic basins. Regional scale models are thusredqto adequately reproduce the processes
that will eventually cause flooding (e.g., Blainat 1994): the generation and propagation of
waves, tides and storm surges. Hence, these pescessst first be simulated at basin scales, to
provide boundary conditions for local, coastal niedin deep areas, the non-linear interaction
between long (tides and surges) and short (surfaaggs can generally be neglected, allowing
the two processes to be simulated independentlgoirirast, wave propagation is affected by
tidal currents and water level fluctuations in &hal areas, and wave breaking can generate
significant currents and elevation setup at thestdéhis setup can propagate far inside estuaries,
thereby affecting the total water levels. For instg Fortunato et al. (2016b) showed that during
a major storm, the wave setup reached about Osside the Tagus estuary. Hence, tidal and
wave dynamics in coastal areas should be simulaitdcoupled models that compute all the

relevant physical processes and their interacsonsitaneously.

Herein WIFF was extended to account for these actemns, integrating a coupled model for
wave and currents. The forecast modeling system tissrefore different models at different
scales. First, waves, tides and surges forecastpraduced at regional scales. The wave fields
are generated with the third generation spectraewaodel WAVEWATCH Il (Tolman, 2009),
allowing for several levels of nesting to accomntedae necessary grid resolution. Sea surface
elevations are simulated at a regional scale usiegshallow water model SCHISM (Semi-
implicit Cross-scale Hydroscience Integrated Syskodel — Zhang et al. 2016). Derived from
SELFE (Zhang and Baptista 2008), SCHISM is an ggmiree community-supported modelling
system based on unstructured grids, designed ®rs#amless simulation of 3D baroclinic
circulation across lake-river-estuary-shelf-oceaaless. SCHISM is stable even at high Courant

numbers and its code is fully parallelized, usimg Message Passing Interface (MPI) standard.

Waves and sea surface elevation regional forecastapined with atmospheric and riverine
information, are then used to force local, higleheson models that simulate water elevations
9
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close to the coast and inside estuaries. Locaéssiahulations are performed with SCHISM-
WWMII (Roland et al. 2012), which couples SCHISMthvithe spectral wave model WWM.
These two models share the same unstructured gddts partition through the different MPI
application processes. The circulation model presidiater elevations and velocities to the wave
model and receives the gradients of wave radiasivesses. This information is exchanged
through the memory (RAM), instead of files, whidrogagly contributes to the efficiency.

While the present modeling approach describes phasaged wave effects on the water levels
(wave setup), it neglects the effects at smalleetscales (wave uprush). This simplification is
required by the use of a phase-averaged wave naodklften by the coarse grid resolution.
Inside estuaries, which are sheltered from thegatier sea waves, this simplification is usually
valid. For instance, the highest significant waegght measured and simulated inside the Tagus
estuary does not reach 1 m (Freire et al., 2008uRa al., 2009) in spite of its large width. In

contrast, neglecting the wave uprush can severalgnestimate inundation in the open coast.

WIFF's forecast system runs on a Linux operatingteay. Its core is composed by a set of
scripts, scheduled to run periodically, which prepand launch each forecast simulation (Figure
2). The scripts interact with PostgreSQL databdsesetrieve input data to force the models,
including river flows and atmospheric forecastsd ato store some results. Simulation
requirements include the results of the previous, fiorecasts from global circulation and

atmospheric models and data from field sensors.
[Figure 2 near here]

In order to optimize the use of available compotai resources, an optional execution
offloading process allows moving the execution awaym the initiator resource. Each
simulation can thus be executed on the machineenter scripts were launched or sent to other
machines, often High Performance Computing (HP&)ueces. To avoid having different code
paths depending on the kind of execution resoureésy used, the offload process is transparent
to the platform and completely model-agnostic.sksithe Secure Shell (SSH) services and Bash
scripting facilities to provide a secure, relialdample and flexible offloading process. Every day,

the system generates 48 hour forecasts of waveseigvels.
10
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3. Demonstration case study

3.1.General approach

The major and deadliest storm surges usually decareas with wide continental shelves (Breilh
2014). With a continental shelf about 20-70 km withe Portuguese coast has thus been spared
from major catastrophes. Still, there are histériemords of severe damages and casualties
associated to storm surges in the Portuguese ¢(Bastas and Dias 2013), and in the Tagus
estuary in particular (Tavares et al. 2015). In£20he Hercules storm caused tens of millions
euros worth of damage along this coast. These gvantivated the development of a forecast

system for extreme sea levels in the Portuguess.coa

The model setup is composed by three distinct empdins (Figure 3): a regional scale wave
model; a regional scale tide and surge model; aloda scale coupled wave-circulation model.

The three applications are detailed below.

[Figure 3 near here]

3.2.Regional modeling: the North Atlantic and the Portuguese shelf

Regional wave simulations are performed with ong-weasting. The first WW3 domain covers
the North Atlantic, from 0° to 70° N and from 0°86° W, with a 0.5° resolution (Figure 3). A
nested grid with a 0.05° resolution is then useth@Portuguese shelf. The time steps are set to
15 and 3 minutes for the coarse and fine gridpeas/ely. The wave spectrum is resolved with
24 directions and 25 frequency bins, following Dioeteal. (2010). The simulations are forced by
wind fields from GFS (Global Forecast System, wweddinoaa.gov) with space and time

resolutions of 1.875° and 6 hours, respectively.

This deployment is operational since 2011, prodydaily forecasts of 48 hours. Results are
compared automatically with online data from fourawe buoys from the Portuguese
Hydrographic Institute and the Lisbon Harbor ava@#aalong the Portuguese coast: Leixdes,

Lisboa, Sines and Faro. In order to assess theamcof the forecasts, errors were computed at
11
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these four stations for a period of 4 years, betm@@l1 and 2015 (Figure 4). The error metrics
selected were the root mean square error (RMSE)RMSE normalized by the mean of the
observations (NRMSE) and the bias (Table 1). Reslibw the excellent behavior of the model
in the western Portuguese coast (Leixdes, Lisba@h Zines), where the errors are similar to
hindcast models (e.g., Dodet et al. 2010; Rusu@ueddes Soares 2015). The model tends to
underestimate the significant wave heights (10Ger2 bias), but the error is small even for the
largest waves. Errors are larger in the southeastod-aro buoy), possibly due to the inability of

the atmospheric model to adequately represent it fields in the Bay of Cadiz.
[Figure 4 near here] [Table 1 near here]

The differences between the forecasts made forséme day and for the following day are
negligible (Table 1), thus providing confidencele use of the 48 hour forecasts. Also, since the
forcing wind fields are occasionally delivered wisbme delay, this small difference allows
WIFF to still generate reliable forecasts. In itsiation, the WIFF forecast is forced by the most
recent atmospheric forecast, as long as it coversvhole forecast period (48h). This possibility
makes the system more resilient to failures.

Water levels due to tides and surges are simulattd SCHISM in depth-averaged barotropic
mode in a domain that covers a significant porwdrthe Northeast Atlantic (Fortunato et al.
2016a). The resolution is particularly fine in tRertuguese shelf, reaching 250 m. The model is
forced at the open boundaries by tides from theajltdal model FES2012 (Carrére et2012)

and by the inverse barometer effect, to accountaforospheric pressure variations. Inside the
domain, the model is forced by the tidal potentaal] forecasts of atmospheric pressure and wind
from NOAA’s GFS.

The model has been running operationally since Mafl5. Results from the forecasts between
March and December 2015 were compared with measmtsnat several Portuguese, Spanish
and French tide gauges (Table 2). RMS errors artheforder of 5-7 cm along the western

Iberian coast, and 11-13 cm in the Bay of Biscaytuhato et al. (2015) showed that the RMSE
for the present forecasts are about 10-35% sntaber those provided by a standard model in the

Portuguese coast (Maraldi et al. 2013). Time safeslevations and surges at the Cascais tide
12
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gauge during a storm surge that hit the Portugoeast in May 2016 show that the model is able

to reproduce elevations during energetic eventgueisa).

[Table 2 near here; Figure 5 near here]

3.3.Local modeling: the Tagus estuary

The SCHISM-WWMIII application covers a domain ofcaib 120 km long, including a coastal
area with a radius of about 30 km (Figure 3). Tbeal model is forced by results from the
regional wave and sea level models at the oceandaoy. Some areas particularly prone to
flooding, above the highest astronomical tide ljdetermined by Rilo et al. 2014), are included
in the model domain (Figure 6a). A digital terranodel was constructed using the most recent
bathymetric data from the Lisbon Harbor authoritfDAR data of the coastal margins from the
Portuguese Environmental Agency, and high-resalutapography from the Direcdo Geral do
Territério. The grid has about 80,000 nodes. Thatigpresolution varies between 2 km at the
outer bay and typically 20-60 m close to the magdfigure 6b). The time step is setto 30 s. The
friction coefficient in the estuary is defined bdsmn the bed sediments (Guerreiro et 2015)
and on the land cover from Chen et al. (2015) onldnd. The river boundary is forced by
extrapolations of flow measurements (http://wwwismt), which are automatically replaced by
climatology when unavailable. Atmospheric pressamed wind forecasts from the 9 km
implementation of the WRF model provided http://mwandguru.cz complete the model

forcings.
[Figure 6 near here]

The model was validated through four different dedthe first test verifies the ability of the
model to represent water levels variability throogihthe estuary. Hindcast simulations were
performed, forced by tides and river flow. Reswtse compared with synthesized tides from 13
tidal gauges distributed throughout the estuarguRe show the excellent accuracy of the model,
with RMS errors of 4-16 cm (Table 3). These erroospare favorably with those previously

reported for the same dataset (Fortunato et al9;1@ierreiro et al. 2015). The second test

13
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assesses the ability of the model to reproducegetier events. The most severe warning
provided by the Tagus forecast system so far oeduon May 8, 2016, when over 30 cm of
water were predicted for Seixal. Inundations ocediras predicted, and traffic had to be
interrupted in the road that borders the estuativéa et al., 2016). Forecasts produced in May,
2016 are compared with tide gauge data at twoostsfjFigure 5b, c), showing the ability of the
model to reproduce storm surges. The third tesfiegrthe ability of the model to reproduce
marginal inundation during an extreme event. Thelehavas run for the period of the Xynthia
storm, between February 18 and March 4, 2010. kteneof the flooding that occurred during
those days in the Seixal old city center (Figurg \Bas determined through a post-event field
survey, by interviewing the local authorities anhlgzing photographs taken during the event
(Freire et al., 2016). The extent of the floodinggicted by the model fully agrees with the field
survey data to within grid resolution accuracy:th# surveyed points are located within the layer
of partially wet elements (Figure 7). For the saewent, the root mean square error of the
elevations at the Cascais tide gauge was 7.5 amll;i the fourth test verifies the ability of the
model to produce accurate results away from tharmbeundary in forecast mode by comparing
model results with data obtained with a Level Titd0 tidal gauge installed in the Seixal Bay
(Figure 8a) between March 20 and 31, 2015. The hamtriracy is similar to the one obtained in
hindcast mode, with a RMS error of 13 cm (Figuré. 8mgether, the four tests show that the

model accurately forecasts the flooding associatetktreme events in the Tagus estuary.

[Figures 7, 8 near here] [Table 3 near here]

3.4.WIFF deployment for the Tagus estuary

The WIFF deployment for the Tagus estuary is omghialong four main components: early-
warning, flood forecast, forcings and risk analy§tsggure 9a). The first component provides
information on the vulnerable areas that may bedéa in the next 48 hours. The Seixal
Municipality waterfront, which is flooded on a yBabasis, was chosen as a local-scale case for
the warning component implementation (Freire et28116). At selected critical points along the

margins, the total water depth is evaluated evéryminutes. Warnings of different levels of
14



342 inundation severity are provided when predefinagégholds are exceeded (Figure 9b) and an
343 early-warning bulletin is automatically generated aent by email to the civil protection agents.
344  The flood forecast component uses layer maps, edurom shapefile format files, and makes
345 them available through geo-referenced maps (Fi@a)e These maps provide zoom and pan
346  capabilities, as well as the ability to switch lesyeon and off and superimpose them. The
347 forecasts are grouped by days and made availaldacht hour. This component also offers the
348  possibility to visualize monitoring data, compahernh to the model results and download this
349 information in CSV format (Figure 9d). The forcingsmponent provides access to the public
350 site with the regional forecasts. Model results loaraccessed as animations or as time series, and
351 data/model comparisons can be performed. Findly risk analysis component provides access

352 to both hazard and vulnerability maps.
353  [Figure 9 near here]

354  Since March 2016 the WIFF deployment for the Tagstiary has been used by the Seixal
355  Municipal Service for Civil Protection as a supptol for flood emergency management. So far,
356 the flood warning alerts that occurred consistedstiyan the lowest warning level (yellow,

357 corresponding to less than 0.2 m of water heightese warnings have been validated by in situ
358 observations and the acquired experience on past ffvents by the civil protection services.
359 The early-warning bulletins have been particularbeful as a way to disseminate the relevant
360 information for planning the emergency responseuyh the several civil protection agents (e.g.,
361 fire brigades, police). However, a detailed evatraof the impact of WIFF as a decision-making
362 supporting tool for the emergency managers requaeonger operation of the system,

363 particularly during extreme water level events.

364 4. Summary, discussion and outlook

365 A new computational forecast framework for floodkrimanagement was developed and
366 implemented in the Portuguese coast. The IT sysseatcurate, robust and agile and can be

367 extended to other estuaries and coastal zonesoanthér emergency concerns. The regional-
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scale results are publicly available, while thealescale forecasts are only available to the cbasta
and emergency authorities, tailoring details anafidentiality of information to comply with the
user requirements. By supporting the forecastsigim-tesolution models that solve the adequate
physical processes and their interactions, and mgalie results available at a friendly, multi-
device interface, the proposed framework contribute an enhanced support to coastal

managers.

Forecast frameworks such as the one introducednhesa thus play a major role in optimizing
the response of the authorities to extreme evéméseby avoiding or mitigating the effects of
major disasters. The development of these systertieerefore expected to continue in the near

future. However, several challenges remain to loeessed.

It is unclear at this point whether and how thé flodecasts should be disclosed to the public, and
there are strong arguments on both sides (Morroal. &015). Clearly, a better informed public
can avoid irrational decisions, both in the shertrt (e.g., going to the sea-side during severe
maritime conditions) and in the long-term (e.g.rgmasing property in areas at risk). However,
many coastal managers strongly oppose the opeaseetd this type of information to the public,
arguing that model results can be misread by tha@iQucausing unjustified panic or false
assurance. The approach followed in WIFF is toldsscthe coarse-resolution results from the
regional models to the public and make the redudts the local model available to the proper
authorities only. The decision on informing the lulkvill be made by these authorities based on
information from different sources. The adequatereach to disclose complex information such
as those provided by the models used herein tgeheral public is also a challenge as it requires

a detailed usability and public acceptance analysis

Unveiling the forecasts to the public must takeo iatcount the uncertainty associated to the

predictions. Indeed, in spite of the excellent aacy of the models shown above, significant

sources of errors remain. While the water elevatiam be determined with errors of the order of

0.01-1 m (e.g., Bertin et al. 2012; Kerr et al. 2Dthe uncertainty in the determination of the

position of the water line is significantly highdrhis uncertainty has several sources, including

the model’'s horizontal resolution, and its inakilib resolve short-scale features, common in
16
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urban areas; the low topographic gradients, whroplidy vertical errors in the water elevation;
outdated or inaccurate digital terrain models; eetyhg water infiltration and sewage systems.
Yet, the position of the water line is one of tley kinformation required by end-users. Estimating
this uncertainty and conveying it to the end-usetberefore a clear requirement for the forecast
systems, and sophisticated approaches based omtdassimulations are now starting to be
followed (Hollt et al. 2015). In the Portuguese I§hthe sea surface variability is strongly
dominated by tides, which are easier to reprodwmirately than storm surges. Hence, the
uncertainty is lower than in areas of the world rehgtorm surges can reach several meters. The
system described herein deals with the communitatfaincertainty in two simple ways. First,
real-time data/model comparisons are an integrel gfathe system (Figure 9d). The user can
therefore obtain daily estimates of the errors.o8dly, the land-water interface is shown as a
strip, rather than a line. The strip is composedhayelements that have both wet and dry nodes
(Figure 7). While these details of the forecastesysdo not convey all the uncertainty associated

with the predictions, they help showing the endrtisat models are not reality.

Forecast systems should provide information on raimoous basis. They are therefore totally
autonomous, and should be able to run without humizmvention. However, they can fail for
several reasons, including power failures, intepmhmunication failures and unavailability of
the driving atmospheric forecasts and other ingutg.only can these failures have an impact on
the end-users, but they can also entail significantenance costs in terms of human resources.
The reliability of the system should thus be maxedi. In WIFF, all forecasts run redundantly on
two different computers, with a few hours’ delapdamost forcings have alternative sources
when the primary source fails. Further robustness be obtained by resorting to cloud
computing services (Rogeiro et al. 2015), which also be a way to progress in porting forecast

systems to the hands of the coastal managers.

This system will continue to be enhanced throughithprovement of the models, the inclusion
of new datasets and local models, the extensidheoforecast periods, the optimization of the
codes and the development of additional servicesiged by the interface. Risk criteria are also

being developed, in order to provide automatictsler the authorities.
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Tables

Table 1. Validation of the wave forecasts betweer021 and 2015 at four wave buoys along
the Portuguese coast. Values between brackets refey forecasts made for the following
day.

Error measure LeixOes Lisboa Sines Faro
RMSE (cm) 32 (33 30 (30 34 (34 44 (44
NRMSE (%) 17 (18 27 (28 22 (23 48 (49
Bias (cm) 16 (16 23 (23 8 (9) -19 (-20)
Longitude -9.1C -94 -8.9¢ -7.9C
Latitude 41.2( 38.€ 37.9( 36.9(
Depth (m) 83 73 97 107

Table 2. Validation of the regional tide and surganodel: RMSE obtained for the forecasts
from March to December 2015. Data were retrieved fsm http://www.emodnet.eu. The
mean sea level was removed from the time series bed the evaluation of the error due to
doubts on the reference level at some stations.

Station RMSE (cm)
Las Palma 6.7
Huelve 6.€
Sine: 5.2
Penichi 6.2
Nazart 6.3
Leixbes 7.C
Vigo 6.€
La Corufi 12.¢
Gijén 11.¢
Santande 11.7
Bilbac 12.F
Port Bloc 11.¢
Socoi 13.¢
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602 Table 3. Validation of the Tagus model in hindcastnode: RMSE at 13 tidal stations. The
603  position of the stations is indicated in Figure 3.

Station RMSE (cm)
Cascai 4.€
P. Arcos 3.7
Trafarie 5.2
Lisboe 5.¢
Pedroucc 4.1
Cacilha: 5.2
Seixa 6.4
Montijo 6.t

C. Ruivc 8.5

Alcochete 12.C
Sta. Iria 15.€
Pte. Ervs 15.7
Vila Frence  12.C

604
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607  Figure 1. Information flow between the back-end andhe front-end.
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Figure 3. Generic modeling scheme. The figures ohé wave model show the significant
wave heights forecasts in early January 2014, durghthe Hercules storm. The figure of the

regional tide and surge model shows an aspect ofetlpublic interface, with the model/data

comparison (http://ariel.lnec.pt). The figure of the Tagus estuary shows the bathymetry, the
model domain and the tidal stations used for valid@on in hindcast mode.
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Figure 7. Validation of the Tagus model for an exttme event (Xynthia storm, February
2010). The location of this area is shown in Figuréa). The red circles indicate the surveyed
extent of the flooding in the city of Seixal. The @t elements (elements with three wet nodes)
are indicated in dark blue, and the partially wet édements (elements with one or two wet
nodes) are shown in light blue. The green circle thcates the location of the temporary
monitoring station at Seixal (X=-84489.407 m; Y=1-13102.754 m, ETRS89 TM-06).
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Figure 8. Validation of the Tagus model in forecastmode: comparison between
observations and model results at the Seixal tempary station (Figure 7). The RMS error
Is 13 cm.
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Figure 9. a) General overview of the WIFF deploymenfor the Tagus and of its services,
showing an integrated geographical view of the waings for the Seixal municipality; b)

summary of the warnings for the Seixal area, with e colored bars showing the warning
levels at several vulnerable locations selected lblge civil protection agents; c) forecast of
the significant wave heights, in meters; d) automat data / model comparison at the Algés
tide gauge. The menu on the left-hand side of thegtire (in Portuguese) reads: Login,
Alerts, Estuarine inundation, Urban inundation, Forcings, Risk evaluation, Images
acquisition, Demonstration of use, Team and acknowtigements.
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