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CODE IMPLEMENTATION OF PARTICLE BASED DISCRETE ELEMENT METHOD 
FOR CONCRETE VISCOELASTIC MODELLING 

Abstract 

This report describes the application of discrete element method to rigid particle models and proposes 

the use of the discrete element method for the modelling of the behaviour of concrete, namely the 

time-independent and time-dependent or instantaneous and delayed behaviour. The main goals of this 

work are: i) the implementation of a discrete element method code using rigid particles; and ii) the 

implementation of constitutive contact models for the delayed behaviour of concrete. 

Elastic, viscoelastic and aging models were implemented and several examples were used to validate 

the method. A fast numerical simulation scheme for the creep behaviour was applied to decrease the 

computational effort over large loading times for the analysis of concrete behaviour. 

Keywords: Discrete element method / Rigid particle model / Dynamic relaxation / Viscoelastic 

behaviour / Solidification theory 

IMPLEMENTAÇÃO NUMÉRICA DO MÉTODO DOS ELEMENTOS DISCRETOS 
APLICADO A MODELOS DE PARTÍCULAS PARA A MODELAÇÃO DO 
COMPORTAMENTO VISCOELÁSTICO DO BETÃO 

Resumo 

Neste trabalho descreve-se a utilização do método dos elementos discretos para a modelação do 

comportamento do betão, nomeadamente para o comportamento instantâneo e diferido. Os principais 

objetivos são: i) a implementação do método dos elementos discretos aplicado a modelos de 

partículas rígidas através de um programa de computador; e ii) a implementação de modelos 

constitutivos no contacto para a modelação do comportamento diferido do betão. 

Foram implementados modelos de contacto elásticos, viscoelásticos e viscoelásticos com 

endurecimento, tendo sido utilizados vários exemplos para a validação do método. Foi desenvolvida, 

também, uma metodologia numérica para uma análise dos efeitos de fluência do betão de forma a 

diminuir o esforço computacional para análises com longos períodos de carregamento. 

Palavras-chave: Método dos elementos discretos / Modelo de partículas / Relaxação dinâmica / 

Comportamento viscoelástico / Teoria da solidificação 
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1| Introduction

1.1 Scope and objectives

The presented report describes part of the work developed for the Ph. D. thesis of the grant holder

Carlos Serra, entitled "Experimental characterization and numerical modelling of dam concrete rheolog-

ical properties" which started in 2013 [Serra et al., 2013]. It is proposed the use of the discrete element

method for the modelling of the behaviour of concrete, namely the time-independent and time-dependent

or instantaneous and delayed behaviour. Bearing the objectives of the thesis., the main goals of this work

are:

1. the implementation of a discrete element method code using rigid particles;

2. the implementation of constitutive contact models for the delayed behaviour of concrete.

The main purpose of the developed particle based discrete element method is to test different consti-

tutive models for the further study of complex concrete systems. Regarding those tests, three types of

constitutive models were implemented: 1) the elastic time-independent behaviour based on the Hooke’s

model; 2) a viscoelastic time-dependent behaviour based on the Burger model; and 3) an aging time-

dependent model based on the solidification theory.

The implemented particle based discrete element method relies on a explicit time-stepping scheme and

therefore the time-step is bounded by a small value, which can be very time-consuming for the study of

long-term behaviour of concrete. To overcome this constraint, a numerical scheme for fast simulation of

time-dependent behaviour was also introduced into the particle model.

The present report is organized into five chapters, namely this "Introduction", a "Literature review", with

the discussion of the different types of discrete models considered in this report, a chapter describing

the implemented "Particle based discrete element method", the "Verification of the code implementation"

with several examples and the "Conclusions".

1.2 Framework

The initial framework of this study was the development of a numerical implementation for the analysis

of a structural system in the context of the doctoral course of the Faculdade de Ciências e Tecnologia

of the Universidade Nova de Lisboa entitled Elementos finitos em engenharia de estruturas, under Prof.

Corneliu Cismasiu’s supervision.

LNEC - Proc. 0403/112/20181 1
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2| Literature review

2.1 General aspects

The quasi-brittle behaviour of some heterogeneous materials is considered to be poorly simulated by

continuous approaches that disregard the material microstruture and the randomness of material het-

erogeneity [Azevedo, 2003]. The damage and fracture processes of this type of materials are complex

and sensitive to the area where the energy is dissipating and, therefore, numerical models should con-

sider this effect [Bažant, 2002].

Discrete models are able to introduce some type of microstructure and randomness into the model

and the cracking zone is explicitly taken into consideration. By considering the material as a randomly

produced assembly of discrete rigid particles in contact with each other and, for those contacts, consider

a simple interaction model, it is possible to take into account the former effects.

Rigid particle models, initially developed for modelling granular materials, are being used to reproduce

the overall behaviour of quasi-brittle materials, such as rock and concrete, and have been shown to re-

produce several macroscopic phenomena, such as elasticity, viscoelasticity, post-peak behaviour, crack

propagation and strength increase with confinement.

2.2 Discrete models

The use of distinct or discrete element method (DEM) was first applied to the study of geotechnical

materials of granular nature. The work of Cundall in 1971 show the basis for the DEM simulation by

considering the movement and interaction of rock blocks [Cundall, 1971]. In 1979, Cundall and Strack

proposed a 2D circular particle model, validated with the experimental study of Josselin de Jong and

Verruijt for a physical assembly of disks [Cundall and Strack, 1979]. Other models were developed in

this period considering similar hypotheses [Rodríguez-Ortiz, 1974; Kawai, 1978].

Later on, cracking was taken into account for geomaterials, such as rock, with very simple contact

models between rigid elements [Zubelewicz and Mróz, 1983; Plesha, 1983]. Plesha [1983] focused on

the importance of the rock microstruture and proposed a model explicitly considering the microstruture

into the interaction of discrete rigid polygons or polyhedra. At a larger scale problem, Vieria de Lemos

[1987] applied the method to the dynamic analysis of rock mass of dam foundations using polyhedra.

Bažant et al. [1990] proposed a model where pin-jointed frames are connect to the centres of the aggre-

gates and therefore the dimension of the frames are linked to the mesostructure of the material. Cusatis

[2001] presented a tridimensional particle model where coarse aggregates are explicitly modelled as

rigid particles and the interaction between them simulates the cement paste or mortar.

The lattice models considering bending frames [Schlangen and van Mier, 1992] differ from the lattice

models proposed by Bažant et al. [1990] since the former use the finite element method (FEM) and the
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latter use the distinct or discrete element method (DEM) for obtaining the response. The former models

solve the equilibrium equations, by assembling the stiffness matrix of the system, at each time step. The

latter method is based on a numerical time integration scheme for solving the equations of motion and

for the definition of contact interaction between elements.

Within discrete models, there are the lattice models where the material is discretized as a random mesh

of interconnected frames, with or without bending stiffness. The dimension of the frames is related to

the heterogeneity of the material. The global behaviour, including damage and failure, is obtained by

removing the frames that reach a maximum strength stress as load increases [Schlangen and van Mier,

1992]. Some work has been done improving this types of models [Lilliu and van Mier, 2003].

Rigid-body-spring networks have been also used to model the overall behaviour of structures [Kawai,

1978] and the behaviour of concrete [Bolander and Saito, 1998]. These models require the definition of

the interaction springs between rigid bodies at their interface.

The present work refers to the use of discrete element method (DEM) with a rigid circular particle model.

The main developments of this type of models are due to Cundall, which is still actively working in

modelling the behaviour of rock mass [Mas Ivars et al., 2011]. In fact, DEM has been used to simulate

granular and cohesive material, with the aid of several types of constitutive models. Meguro and Hakuno

[1989] proposed an extended version of DEM, the modified discrete element method, MDEM, with the

intent of simulating the behaviour of concrete under extreme dynamic events. The difference at that time

was the interaction model used between the rigid particles, which where nonlinear normal and shear

springs, called the "pore-strings".

Several other particle models where developed throughout the years, based on the main original Cun-

dall’s DEM [Cundall, 1971; Cundall and Strack, 1979] as the main solving method, but using different

interaction models for different types of problems. Hassani [1998] compared the results of an assembly

of circular particles with a visco-elastic model (Voigt-Kelvin model) and particular failure criteria with the

results of a one-shear test. In the original rigid particle, the constitutive models used at contact involved

only interaction at one point of contact and only forces where developed at each contact. However,

materials such as rock present some kind of cemented granular nature which can be considered by

introducing a bending stiffness at the contact. Failure occurs when maximum tensile and shear stresses

at the contact, due to both force and moment developed at the contact, are exceeded [Potyondy and

Cundall, 2004]. This enhancement is known to improve the main physical behaviour of rock, such as

elasticity, micro-cracking and peak strength, for several test configurations: Brazilian test, uniaxial and

triaxial compression test. Tavarez and Plesha [2007] used classical DEM formulation for modelling pro-

jectile penetration in concrete, with very high loading rates. Azevedo [2003] proposed a rigid particle

model based on DEM for the analysis of plain and reinforced concrete, where both aggregates and re-

inforcement are explicitly considered. In his work, several contact models were used in order to proper

simulate the dam concrete behaviour. Some work have been also done in order to evaluate the influ-

ence of the coarse aggregates on the development of stress-strain behaviour [Azevedo et al., 2008].

The post-peak tensile and shear behaviour at contact can be considered using brittle, linear or bi-linear

constitutive models [Azevedo, 2003].
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3| Particle based discrete element method

3.1 General aspects

The discrete element method (DEM) can be described as a numerical method for solving structural

systems of individual elements, blocks (polygons) or particles (circular or spherical) interacting with

each other at contact points or interfaces. Each element, usually considered to be rigid, is ruled by a

motion law and each contact by an interaction law. The motion law defines the differential equation that

governs the kinematic of the elements. This differential equation is given by the Newton’s second law

of motion. The interaction law, known as the force-displacement law, determines the interaction forces

between particles at the contact point, according with their relative displacement. The unbalanced force

of each element at a given time is used for setting new velocities and positions using the law of motion,

and, therefore, new interaction forces.

The advantages of this type of method is the possibility to have large displacements and rotations, the

complete detachment of two elements when their contact reaches its strength capacity and consider

new contacts during the simulation [Azevedo, 2003]. Figure 3.1 illustrates a complete DEM cycle with

the update of the forces and displacements of each element, in between the force-displacement law

and the law of motion. The force-displacement law defines the contact interaction model and gives the

response of incremental forces for the correspondent incremental displacements. The law of motion

introduces the differential equation that governs the movement of each particle, based on the Newton’s

law of motion and through numerical integration of the accelerations.

Figure 3.1 – General DEM cycle

Considering external applied forces or imposed deformations and predefined boundary conditions it is

possible to calculate the response of the system using a method for solving the differential equation in
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each cycle. The numerical methods commonly used for this type of problems rely on explicit integration

schemes, where the solution at a given time is predicted from the response at the former time-step. In

DEM, the explicit integration scheme is used for the integration of accelerations into velocities.

3.2 Two-dimensional rigid particles

This work concerns the particular case of DEM applied to two-dimensional rigid particles. The elements

interacting with each other are therefore circular rigid particles defined by a position in space and a given

radius (Figure 3.2). With this type of element, the contact detection and the general cycle calculations

are easier to implement and require less computational time.

For this report the basis of DEM applied to two-dimensional rigid particles is presented and the following

topics are discussed:

1. Force-displacement law and law of motion;

2. Explicit time-integration algorithms, namely the central difference method;

3. Stability of the solution in explicit schemes and the mechanical time step determination;

4. Types of damping;

5. Convergence criteria;

6. Micro-macro relationships and comparison with elasticity theory;

7. Contact constitutive models.

3.3 Force-displacement law

The force-displacement law or law of forces defines the behaviour of each contact between particles.

When a contact between two particles is identified (Point C in Figure 3.2), the subsequent incremental

relative displacements generates a contact force increment, which is applied to the centre of the parti-

cles. The contact overlap is the superposition of each particle on one another and the general convention

considers compression forces related to positive contact overlap and tension forces for negative contact

overlap.

The distance between particle A and particle B, d, is given by Euclidean distance between the two

centres of gravity, x[A] and x[B], and the contact overlap, Un, is obtained by the difference of the sum of

both radius and the distance between particles.

d =

√√√√ 2∑
i=1

(
x

[B]
i − x

[A]
i

)2

(1)

Un = R[A] +R[B] − d (2)
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Figure 3.2 – Contact point definition

With the definition of the contact overlap and calculating the unit normal to the contact plane, n, one can

obtain the contact point location, x[C].

ni =

(
x

[B]
i − x

[A]
i

)
d

(3)

x
[C]
i = x

[A]
i +

(
R[A] − 1

2
Un
)
ni (4)

The contact velocity, ẋ[C] is defined by the relative velocity of both particles involved, A and B, at the

contact point,
(
ẋ[C]

)
A

and
(
ẋ[C]

)
B

. The dot above the position, x, denotes the first derivative with

respect to time and the bold refers to a vector with two components.

ẋ[C] =
(
ẋ[C]

)
B
−
(
ẋ[C]

)
A

(5)

By its turn, the velocity of the particle Φ at the contact point,
(
ẋ[C]

)
Φ

, (translational velocity) is given by,

(
ẋ

[C]
i

)
Φ

= ẋ
[Φ]
i + εi3kω

[Φ]
3

(
x

[C]
k − x

[Φ]
k

)
(6)

εijk =


0 if two indices coincide

+1 if i.j.k permute like 1.2.3

−1 otherwise

(7)

where εijk is the permutation symbol and ω
[Φ]
3 is the rotational velocity of particle Φ. In Figure 3.3 the

velocities of each particle and of the contact are represented.

The displacement increment of the contact, ∆x[C], for a given time increment, ∆t, is, by integration,

∆x[C] = ẋ[C]∆t (8)
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Figure 3.3 – Contact point velocity definition

and can be decomposed into the normal, ∆x
[C]
n , and the shear, ∆x

[C]
s components.

∆x[C]
n =

2∑
i=1

(
∆x

[C]
i ni

)
(9)

∆x[C]
s = ∆x[C] −∆x[C]

n n (10)

The normal and shear contact force increments, ∆F
[C]
n and ∆F[C]

s , are obtained from the linear consti-

tutive law of the contact and the normal and shear contact stiffness, kn and ks (Figure 3.4).

∆F [C]
n = −kn∆x[C]

n (11)

∆F[C]
s = −ks∆x[C]

s (12)

Figure 3.4 – Incremental linear contact model
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Since the shear contact force is defined in global coordinates and to take into account large displace-

ments, its necessary to correct the shear contact force to refer it to the new contact plane, between each

time step, assuming infinitesimal rotations. Figure 3.5 shows the corrected shear force referred to the

new contact plane.

∆F[C],corrected
s = ∆F[C],old

s − εij3ε3mn∆F
[C],old
j noldj nn (13)

and, therefore, the updated predicted normal and shear forces at contact point are obtained from,

F [C]
n = F [C],old

n + ∆F [C]
n (14)

Fs
[C] = Fs

[C],corrected + ∆Fs
[C] (15)

Figure 3.5 – Correction of shear contact force

The contact model is applied and then the new contact force, F[C], is given by the vectorial sum of

normal and shear components (the • represents the internal product between two vectors).

F[C] = F [C]
n • n + Fs

[C] (16)

The contact forces, from each contact, are then transmitted and summed to both particles, obtaining the

resultant internal forces and moments acting at particle centre, F
[Φ]
t+1 and M [Φ]

3,t+1 (Figure 3.6).

F
[A]
t+1 = F

[A]
t − F

[C]
t (17)

F
[B]
t+1 = F

[B]
t + F

[C]
t (18)

M
[A]
3,t+1 = M

[A]
3,t − ε3jk

(
x

[C]
j − x

[A]
j

)
F

[C]
k,t (19)
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M
[B]
3,t+1 = M

[B]
3,t + ε3jk

(
x

[C]
j − x

[B]
j

)
F

[C]
k,t (20)

Figure 3.6 – Particles forces

3.4 Law of motion

3.4.1 Newton’s second law

Newton’s second law of motion defines the response of a single particle with applied forces or moments,

F(t) = mẍ(t) (21)

M3(t) = Iω̇3(t) (22)

where F(t) and M3(t) are the total applied force and moment at time t, m and I are the total mass and

inertia of the particle, and ẍ(t) and ω̇3(t) are the particle translational and angular accelerations. The

inertia is βmR2, where β is 2/5 for spherical shaped particles and 1/2 for disk shaped particles.

There are several numerical techniques for solving differential equations based on time discretization

into time steps, ∆t, and approximating derivatives within that discretization. Explicit methods calculate a

solution at t+ ∆t based only on the previous solution in t and the derivative using a time increment. The

updated velocities are obtained from the accelerations using centred difference scheme for calculating

derivatives.
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3.4.2 Centred difference time-integration scheme

Differential equations can be numerically solved using finite difference approximations for each deriva-

tive. A derivative of the function f(t) in time, t, ḟ(t) = df(t)
dt , can be defined as limit of the slope of f

within a predefined interval, ∆t, when ∆t tends to zero.

ḟ(t) =
df(t)

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
(23)

One can see that, as ∆t gets smaller, more accurate is the value of the derivative.

The development of a given variable, x(t), in a Taylor series at time, t0, follows,

x(t) = x(t0)(t− t0)0 +
ẋ(t0)(t− t0)1

1!
+
ẍ(t0)(t− t0)2

2!
+

...
x (t0)(t− t0)3

3!
+ · · · (24)

Taking t = t0 + ∆t and considering O(∆tn) the truncated ∆tn terms of the Taylor series one can write

the following expression,

x(t) = x(t0)(∆t)0 +
ẋ(t0)(∆t)1

1!
+
ẍ(t0)(∆t)2

2!
+

...
x (t0)(∆t)3

3!
+ · · · (25)

From which follow the derivative, ẋ(t0),

ẋ(t0) =
x(t0 + ∆t)− x(t0)

∆t
+O(∆t2) (26)

and, therefore, the smaller the ∆t, smaller the error, O(∆t), obtained from discarding the remaining

terms.

The centred difference scheme for the first derivative of x(t) uses two points, x(t−∆t) and x(t+ ∆t),

x(t−∆t) = x(t0)− ẋ(t0)(∆t) +
ẍ(t0)(∆t)2

2
−

...
x (t0)(∆t)3

6
+O(∆t4) (27)

x(t+ ∆t) = x(t0) + ẋ(t0)(∆t) +
ẍ(t0)(∆t)2

2
+

...
x (t0)(∆t)3

6
+O(∆t4) (28)

The derivative, using these two points, is,

ẋ(t0) =
x(t0 + ∆t)− x(t0 −∆t)

2∆t
+

1

3

...
x (t0)∆t2 +O(∆t4)

=
x(t0 + ∆t)− x(t0 −∆t)

2∆t
+O(∆t2)

(29)

From which can be concluded that centred difference scheme gives an accuracy of O(∆t2) (by disre-

garding the ∆t2 and further terms).
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For this work it will be considered that the accelerations at time t, ẍ(t), are related to former and future

velocities evaluated at mid-interval, ẋ(t − ∆t/2) and ẋ(t + ∆t/2), as stated by the centred difference

time-integration scheme,

ẍ(t) =
ẋt+∆t/2 − ẋt−∆t/2

2×∆t/2
(30)

Considering Newton’s second law of motion (Equation 21 and Equation 22), the velocities ẋ(t + ∆t/2)

are obtained from,

ẋt+∆t/2 = ẋt−∆t/2 +

(
F(t)

m

)
∆t (31)

ω
t+∆t/2
3 = ω

t−∆t/2
3 +

(
M3(t)

I

)
∆t (32)

The future position, x(t+ ∆t), and future rotation, θ(t+ ∆t), are given by,

xt+∆t = xt + ẋt+∆t/2∆t (33)

θt+∆t = θt + ω
t+∆t/2
3 ∆t (34)

Figure 3.7 is a graphical representation of the adopted central finite difference scheme. Velocities are

determined at mid-interval (t ± ∆t/2) and positions are determined at primary intervals (t ± ∆t). The

numerical scheme starts considering an initial value for the particle velocity at the time t −∆t, ẋt+∆t/2

and a given external force, F (t), applied to one or several particles. The unbalanced force, due to the

external force, is converted into an acceleration, and using Equations 31 and 32 the new velocities can

be calculated. The new positions are given by Equations 33 and 34 based on the velocities at mid-

interval and the former position. The overlap is recalculated, new contact forces are derived from the

contact model and new particle forces are obtained. If there are unbalanced forces, the accelerations

are not null and the numerical procedure continues until convergence.

3.4.3 Global viscous damping

For a single degree of freedom damped system, with mass, m, stiffness, k, and c as the damping

coefficient, the dynamic equation of motion is,

mẍ(t) + cẋ(t) + kx(t) = 0 (35)

Critical damping occurs when,
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Figure 3.7 – Graphical representation of the central difference scheme

c = cc = 2ωm (36)

where ω is the natural angular frequency [Clough and Penzien, 1993]. A damping ratio can be defined

as the ratio between damping, c, and critical damping, cc,

ξ =
c

cc
(37)

Usually dynamic systems are undercritically-damped (c < cc) and, therefore, the damping ratio, ξ, is

lower than 1. One can choose the value of c equal to cc and ξ equal to unity, in order to ensure that the

vibration mode is critically damped and, therefore, obtain a response that does not include oscillatory

behaviour and converges faster to the steady-state position, where the unbalanced forces are null.

In N degree of freedom systems, there are N natural angular frequencies and it is difficult to choose the

value of damping coefficient that ensures maximum damping efficiency. For complex systems it is usual

to estimate the damping coefficient value for the lowest circular frequency, considering an undamped

system,

c = 2ω0mξ (38)

The equilibrium is obtained from a sum of the inertial forces and damping forces,

F(t) = mẍ(t) + cẋ(t) (39)
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M3(t) = Iω̇3(t) + cω3(t) (40)

For damped systems the law of motion has a viscous term in the right hand sides of Equation 31 and

Equation 32 and the linear and angular velocities, ẋ(t) and ω3(t), can be obtained from,

ẋt+∆t/2 =

(
D1ẋ

t−∆t/2 +

(
F(t)

m

)
∆t

)
D2 (41)

ω
t+∆t/2
3 =

(
D1ω

t−∆t/2
3 +

(
M3(t)

I

)
∆t

)
D2 (42)

where D1 = 1− (c/m)∆t/2 and D2 = 1
1+(c/m)∆t/2 .

3.4.4 Local non-viscous damping

Another type of damping, proposed by Cundall [1987], is the local non-viscous damping in which the

damping force is proportional to the absolute value of the unbalanced force.

This results in the following expressions for the law of motion,

F(t) + Fd(t) = mẍ(t) (43)

M3(t) +Md
3 (t) = Iω̇3(t) (44)

where Fd(t) and Md
3 (t) are, respectively, the translational and the rotational damping forces, which can

be obtained from,

Fd(t) = −α
∣∣F(t)

∣∣ ẋ(t)

‖ẋ(t)‖
(45)

Md
3 (t) = −α

∣∣M3(t)
∣∣ ω3(t)∣∣ω3(t)

∣∣ (46)

The linear and angular velocities, ẋ(t) and ω3(t), can be obtained from,

ẋt+∆t/2 = ẋt−∆t/2 +

(
F(t) + Fd(t)

m

)
∆t (47)

ω
t+∆t/2
3 = ω

t−∆t/2
3 +

(
M3(t) + Md

3(t)

I

)
∆t (48)
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3.5 Stability of the solution in explicit integration schemes

3.5.1 Mechanical critical time step determination

When considering explicit time integration schemes the solution is more accurate and stable for infinitesi-

mal time step increments and there is a critical time step for which error do not grow along the simulation.

The stability of the solution along time is obtained if the chosen time step, ∆t, is under this critical value,

∆tcrit [Belytschko and Hughes, 1983].

If mass proportional damping is applied, the critical time step should be corrected to take into account

the amount of damping used,

∆t 6 ∆tcrit =
2

ωmax

(√
1 + ξ2 − ξ

)
(49)

where ωmax is the highest circular frequency of the undamped structural system and ξ is a fraction of

the critical damping in the maximum frequency.

3.5.2 Gerschgorin theorem for highest circular frequency estimate

An upper bound of the maximum frequency, ωmax, and therefore a lower value of the critical timestep

can be obtained using Gerschgorin’s theorem [Underwood, 1983], which guarantees that the highest

frequency of a structural system is less than or equal to the absolute ratio between the sum of the

stiffness row to the sum of the mass row,

ωmax ≤ max


√∑n

j=1

∣∣kij∣∣
mi

 (50)

∆tcrit ≈ min

2

√
mi∑n

j=1

∣∣kij∣∣
 (51)

where i, j are the degrees of freedom of a row and a column of the stiffness matrix, n is the maximum

number of degrees of freedom,
∑n
j=1

∣∣kij∣∣ is the absolute sum of the ith row of the stiffness matrix and

mi is the generalized mass of the particle with the degree of freedom i.

A simplified approach for calculating
∑n
j=1

∣∣kij∣∣ is to consider the sum of translational (Equation 52) or

rotational (Equation 54) stiffness of each particle, taking those values as the maximum bounds,

ktrans =

n∑
j=1

∣∣kij∣∣ < Nc∑
c=1

2
(
kn,c + ks,c

)
(52)

∆tcrit ≈ min

{
2

√
mi

ktrans

}
(53)
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krot =

n∑
j=1

∣∣kij∣∣ < Nc∑
c=1

(
R[B]2ks,c +R[B]R[A]ks,c

)
(54)

∆tcrit ≈ min

{
2

√
Ii
krot

}
(55)

where (kn,c + ks,c) is the sum of normal and shear stiffness of the particle, Nc is the number of contacts

of the particle and R is the radius of the particle.

3.5.3 Density scaling

The mechanical critical time step, related to the maximum frequency and required for explicit time inte-

gration schemes, is usually very small which can be time consuming and computationally demanding.

A way to overcome this is to use density scaling or mass scaling.

This approach simulates an equivalent system were these properties are calculated to maximize the

ratio between the lowest frequency, ω0, and the maximum frequency, ωmax, ω0

ωmax
, which, as stated

by Underwood [1983], maximizes the convergence rate to the steady state solution, by minimizing the

spectral radius, ρ∗,

ρ∗ =

∣∣∣∣1− 2
ω0

ωmax

∣∣∣∣ (56)

For this work, time step was chosen as the unity (∆t = 1.0) and, therefore, from Equation 51, one can

obtain the equivalent mass and inertia of the scaled system.

1.0 = 2

√
mscaled

ktrans
⇔ mscaled =

(
1.0

2

)2

ktrans (57)

1.0 = 2

√
Iscaled
krot

⇔ Iscaled =

(
1.0

2

)2

krot (58)

The highest frequency, ωmax, is mesh and material dependent and the lowest frequency, ω0, corresponds

to the lowest participating mode of the structure, related to the load distribution [Tavarez and Plesha,

2007].

Sauvé and Metzger [1995] guarantee a level of tolerance for the stability of the algorithm by increasing

the critical time step by a safety factor of 1.1% and obtaining the corresponding scaled mass and inertia

(safety factor, SF ).

Table 3.1 shows the model properties for the case of using real masses or scaled masses (density

scaling).
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Table 3.1 – Real and scaled system properties

Real properties Properties using density scaling

mreal, Ireal mscaled =
(

1.0×SF
2

)2
ktrans *

Iscaled =
(

1.0×SF
2

)2
krot

ktrans, krot ktrans, krot

ξ = c
cc

ξ = c
cc

c = ccξ c = ccξ

cc = 2ωreal
0 mreal cc = 2ωscaled

0 mscaled

ωreal
0 ≈ {Equation 59} ωscaled

0 ≈ {Equation 59}

ωreal
max ≈ {Equation 50}

∆treal = 2
√

m
k

, (Equation 51) ∆tscaled = 1.0

* where SF is a safety factor in order to guarantee convergence.

3.6 Adaptive dynamic relaxation

For damping the whole range of frequencies in an efficient way, a method, called dynamic relaxation

(DR), is usually used [Underwood, 1983; Petrinic, 1996]. This method calculates an equivalent fre-

quency, ω0, through the Rayleigh’s quotient. The advantage is that there is no need to determine the

natural frequencies at each time step. This circular frequency, ω0, is upper bounded by the maximum

frequency, ωmax. Note that, when density scaling algorithm is adopted and time step is set to unity,

ωmax < 2 which results in ω0 < ωmax < 2 [Azevedo, 2003; Underwood, 1983].

The goal of DR is to avoid overshooting the solution. For this an adaptive DR algorithm (ADR) is used in

which the global damping coefficient, the mass and the inertia are updated at each time increment.

At each time step, the approximate fundamental frequency, ω0, is recalculated using the diagonal matrix

that approximates the global stiffness matrix, Kdiag (non-assembled stiffness matrix).

An approximation of the lowest circular frequency, ω0, associated to a loading condition is based on the

principle of energy conservation, by the Rayleigh’s quotient,

ω2
0 ≈

uTKu

uTMu
(59)

where uT and u are the current displacement vector and its transpose and K and M are the current

tangent stiffness and mass matrix.

In this work, the adopted approach for the Rayleigh quotient is incremental based, using displacement

increments, ∆ut [Underwood, 1983],

ω2
0 ≈

∆uTKdiag∆u

∆uTM∆u
(60)
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Kdiag
ii =

F inti,t − F inti,t−∆t

ui,t − ui,t−∆t
(61)

3.7 Convergence criteria

When converging to the steady state solution, a stopping criteria is needed to terminate the DR iterations.

Force and displacement tolerances, ftol and utol, are defined for this convergence criteria. Within this

work a tolerance of 0.001 was considered for the ratio between the mean of the unbalanced force norm,

‖Funbalancedt ‖mean, and the mean contact force norm, ‖FCt ‖mean, and for the ratio between the average

displacement increment norm, ‖∆ut‖mean, and the total displacement norm, ‖ut‖mean, at a given time

step,

‖Funbalancedt ‖mean
‖FCt ‖mean

< ftol (62)

‖∆ut‖mean
‖ut‖mean

< utol (63)

3.8 Micro-macro approximations

3.8.1 Beam equivalence

The behaviour of a contact can be related to the behaviour of an equivalent beam and a general equiv-

alence between contact micro properties, normal and shear stiffness, kn and ks, and material macro

properties, elastic modulus, E.

The height of the equivalent beam, R̄, is determined by the average radius of the particles, R[A] and

R[B], and the beam length, L, is defined as the sum of both radius,

R̄ =
R[A] +R[B]

2
(64)

L = 2R̄ = R[A] +R[B] (65)

For 2D particle models, with t thickness, the equivalent cross-sectional area, Aeq, and moment of inertia,

Ieq, is given by,

Aeq = 2.0R̄t (66)

Ieq =

(
2.0R̄

)3
t

12
(67)
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The equivalence between micro and macro properties follows,

kn =
EA

L
(68)

ks =
12EI

L3
(69)

Which for pure axial load and pure shear load follows that,

kn = ks = Et (70)

Figure 3.8 – Equivalent elastic beam

3.8.2 Elasticity theory

It is possible also to set an equivalence of elastic properties of a particle assembly to continuum elasticity

theory, considering the Poisson’s effect [Bolander and Saito, 1998],

kn =
E′h

L
t (71)

ks =
E′′h

L
t (72)

E′ =
E

1− ν2
(73)

E′′ =
E

2 (1− ν2)
(74)

where h is the contact height defined as the average diameter of both particles. This type of equivalence

is used mostly for regular packing arrangements, where the relationship between micro and macro

properties can be obtained directly from the former expressions. For random packing arrangements

18 LNEC - Proc. 0403/112/20181



CODE IMPLEMENTATION OF PARTICLE BASED DISCRETE ELEMENT METHOD FOR CONCRETE VISCOELASTIC MODELLING

it is usual set the equivalence to kn and ks using energy properties, for example, strain energy. This

approximate values are then used as the first input parameters for the material calibration procedure.

3.8.3 Energy method

Assuming equal strain energy for the particle model and the equivalent beam the following expressions

for the first estimate of the micro parameter values for the plane stress analysis has been proposed

[Murat et al., 1992],

kn =

√
3

3 (1− ν)
E (75)

ks =

√
3 (1− 3ν)

3 (1− ν2)
E (76)

3.9 Contact constitutive models

3.9.1 Hooke’s model

The elastic model is shown in Section 3.3 (Equations 11 and 12) as an incremental linear model, relating

the incremental contact forces and the incremental relative displacement, for both normal and shear

behaviours. Figure 3.9 illustrates the contact model properties for normal and shear behaviour, for both

instantaneous and over time response. The normal and shear stiffness at contact interface is given by

kn and ks, which do not change over time and yields a constant response over time for constant applied

forces.

3.9.2 Burger’s models

For this work, and to introduce time-dependent behaviour, the Burger’s model was implemented. The

Burger’s model can be represented by a Kelvin and a Maxwell models placed in series and can be used

to simulate creep and relaxation mechanisms in structural systems (EM , ηM , EK , ηK represent, respec-

tively, the stiffness of the Maxwell unit, the viscosity of the Maxwell unit, the stiffness of the Kelvin unit

and the viscosity of the Kelvin unit). Figure 3.10 shows the rheological model representing the Burger’s

model and the overlap response of the model for a constant contact force. The overlap response is

divided into two parts: an elastic (instantaneous deformation) and a time-dependent deformation. The

time-dependent deformation develops over time and has two parts, one from the viscosity of the Maxwell

portion and another from the viscosity of the Kelvin portion.

The total Burger model displacement, U , is given by the sum of each component, the Maxwell model

displacement (which is decomposed directly into two separate components, the spring displacement,

UEM , and the dashpot displacement, UηM ) and the Kelvin model displacement, UK [Itasca Consulting

Group Inc., 2008].
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Figure 3.9 – Mechanical representation of the elastic model: a) Force-overlap diagram; b)
Development of contact forces and overlap over time

U = UEm + Uηm + UK (77)

Considering that applied forces are equal in the Maxwell and Kelvin models (placed in series), the force,

F , at the Kelvin unit is obtained by Equation 78,

F = EKUK + ηKU̇K (78)

For the Maxwell unit, the following constitutive relations can be drawn,

F = EMUEM (79)

F = ηM U̇ηM (80)

Using the former relations, their derivatives and some mathematical manipulation, it is possible to obtain

the differential equation that governs the Burger’s model behaviour,

F +

[
ηK
EK

+ ηM

(
1

EK
+

1

EM

)]
Ḟ +

ηKηM
EKEM

F̈ = ηM U̇ +
ηKηM
EK

Ü (81)
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Figure 3.10 – Mechanical representation of the Burger model: a) Development of contact
forces over time; b) Development of overlap over time

The analytical solution for the differential equation is obtained applying the Laplace transforms and their

inverse [Findley et al., 1976].

For the creep behaviour of a constant applied force, F (t) = F0, considering two initial conditions,

U(t = 0) =
F0

EM
(82)

U̇(t = 0) =
F0

ηM
+
F0

ηK
(83)

the solution of the differential equation gives,

U(t) =
F

EM
+

F

ηM
t+

F

EK

(
1− e

(
−EKηK t

))
(84)

The relaxation behaviour of the Burger’s model can be obtained considering an imposed displacement,

U0, at t = 0 [Findley et al., 1976],

U(t) = U0H(t) (85)
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U̇(t) = U0δ(t), Ü(t) = U0
dδ(t)

dt
(86)

where H(t) and δ(t) are the Heaviside and Dirac delta functions. The solution for these initial conditions

yields,

F (t) =
U0

A

[
(q1 − q2r1) e−r1t − (q1 − q2r2) e−r2t

]
(87)

where,

p1 =
ηM
EM

+
ηM
EK

+
ηK
EK

, p2 =
ηMηK
EMEK

(88)

q1 = ηM , q2 =
ηMηK
EK

(89)

A =
√
p2

1 − 4p2 (90)

r1 =
(p1 −A)

2p2
, r2 =

(p1 +A)

2p2
(91)

The adopted numerical scheme [Itasca Consulting Group Inc., 2008] relies on the central difference

approximation using finite differences for the time derivatives of the Kelvin unit displacement, UK , and

the Maxwell unit displacement, UM . From Equation (78), the first time derivative of UK is given by

U̇K =
−EKUK
ηK

(92)

which can be approximated by,

U̇K ≈
U t+1
K − U tK

∆t
=

1

ηK

−EK
(
U t+1
K + U tK

)
2

+
F t+1 + F t

2

 (93)

U t+1
K =

1

A

[
BU tK +

∆t

2ηK

(
F t+1 + F t

)]
(94)

where,

A = 1 +
EK∆t

2ηK
, B = 1− EK∆t

2ηK
(95)

The total velocity of the Maxwell unit is given by the sum of the velocities of the Hooke’s model and the
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Newton model and, therefore, one can write,

U̇M =
Ḟ

EM
+

F

ηM
(96)

which can be approximated by,

U̇M ≈
U t+1
M − U tM

∆t
=
F t+1 − F t

EM∆t
+
F t+1 − F t

2ηM
(97)

U t+1
M =

F t+1 − F t

EM
+

∆t
(
F t+1 + F t

)
2ηM

+ U tM (98)

As stated earlier, the total Burger’s model displacement is given by the sum of the Kelvin and Maxwell

models displacements, which can be approximated also by the finite difference scheme.

∆U = ∆UK + ∆UM ≈ U t+1 − U t = U t+1
K − U tK + U t+1

M − U tM (99)

The contact force can be obtained from the former relations,

F t+1 =
1

C

[
U t+1 − U t +

(
1− B

A

)
U tK −DF t

]
(100)

where,

C =
∆t

2ηKA
+

1

EM
+

∆t

2ηM
, D =

∆t

2ηKA
− 1

EM
+

∆t

2ηM
(101)

3.9.3 Delayed behaviour of concrete

For the definition of the delayed behaviour of concrete is usual to write the total strain, ε(t, t′), obtained

from a applied stress at time t′, σ(t′), as the sum of the instantaneous strains, εi(t′), the creep strains

εc(t, t′), the shrinkage or dilatation strains, εsh(t), and the thermal strains, εT (t).

ε(t, t′) = εi(t′) + εc(t, t′) + εsh(t) + εT (t) (102)

Considering from here on only the stress-dependent strain, εσ(t, t′) = εi(t′) + εc(t, t′), as a function of

stress, σ(t′), we obtain a constitutive relation (Equation 103), in which J(t, t′) is the creep compliance

(strain at the time t due to a unit stress applied at time t′). The remaining terms of Equation 102 constitute

the stress-independent strain, defined by ε0(t) = εsh(t) + εT (t).

ε(t, t′) = J(t, t′)σ(t′) (103)
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The same constitutive equation in terms of strain history can be written as,

σ(t) = R(t, t′)ε(t′) (104)

where R(t, t′) is the relaxation function (stress at time t due to a unit strain applied at time t′).

Creep compliance can be written as a sum of unit instantaneous deformation (1/E(t′)) and specific

creep deformation (C(t, t′)),

J(t, t′) =
1

E(t′)
+ C(t, t′) (105)

Although the instantaneous behaviour of concrete is a fictitious concept, it is usual to separate instanta-

neous and specific creep strains. Instantaneous deformation value is, actually, a function of loading rate

and, therefore, constitutes a part of the total deformation. Because several test results are considered

"instantaneous" is necessary to define were does instantaneous strains ends and creep strains start. To

overcome this particular aspect is common to define instantaneous strain as the compliance values for

a small loading time, ∆t (Equation 106).

1

E(t′)
= J(t′ + ∆t, t′) (106)

Concrete can be considered as a time-dependent linear viscoelastic material provided that stress is less

than 0.4 of the compression strength and that large sign inversion, large cyclic strains or even significant

changes in water content and temperature do not occur [Bažant and Wu, 1973]. As a consequence of

this hypothesis, we can use the principle of superposition given by the Stieltjes integral,

ε(t, t′)− ε0(t) = εσ(t, t′) =

∫ t

0

J(t, t′)
dσ(t′)

dt′
dt′ =

∫ t

0

J(t, t′)dσ(t′) (107)

Since concrete’s microstructure is always in development, due to hydration of silicates and aging, is

not possible to apply classical viscoelasticity to interpret its behaviour and it is necessary to implement

step-by-step time integration methods [Bažant and Wu, 1973].

3.9.4 Solidification theory

According to the solidification theory proposed by Bažant and Prasannan [Bažant, 1988], aging is due to

cement hydration (formation of new calcium hydrates) and, probably, due to gradual formation of bonds

as a result of polymerization. This complicates concrete numerical modelling because:

• Rheological models, with time-dependent moduli and viscosities, are difficult to deal with;

• Time-dependent parameters are difficult to calibrate from test data;

• Thermodynamic restrictions are difficult to formulate.
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The main idea of solidification theory is to treat aging as a "consequence of volume growth of the load-

bearing solidified matter (hydrated cement) whose properties are non-aging and are described by a

Kelvin chain with age-independent moduli and viscosities" [Bažant, 1988].

As seen before and as shown in Figure 3.11, the total strain can be divided into three parts,

ε =
σ

E0
+ εc + ε0 (108)

where εc is the creep strain, composed by εv, viscoelastic strain, and εf , viscous strain,

εc = εv + εf (109)

and σ is the applied stress, E0 is the elastic modulus and ε0 is the sum of hygrothermal strain (drying

shrinkage, thermal dilatation, chemical strain or autogeneous shrinkage and, for high stresses, cracking

strain).

For high stresses, the dependence of εv and εf on stress becomes nonlinear and represent viscoelastic-

plastic strain and viscoplastic strain, respectively.

The elastic part σ/E0 is the deformation of the mineral aggregate pieces and the microscopic elastic

particles of hardened cement paste (anhydrous cement grains + calcium hydroxide crystals + crystalline

particles in cement gel). Chemically the elastic properties of all components are constant. Despite that

it is usual to consider the elastic strain as a function of age, σ/E(t), Bažant considers this to be a com-

plication and thermodynamically invalid. Therefore, suggests using E0 as a material constant, defined

as the asymptotic modulus, a modulus applicable to very short-load durations (below 1 µ second). The

measured elastic strain is only an apparent elastic strain which is age-dependent and represents the

sum of the elastic part σ/E0 and short-time creep (for loading durations of 1 minute to 1 hour). This con-

cept was already used in double power law [Bažant and Osman, 1976], log-double power law [Bažant

and Chern, 1985a] and triple power law [Bažant and Chern, 1985b].

The proposed model, based on the solidification theory, considers the viscoelastic strain, εv, a conse-

quence of the volume fraction growth, v(t), and the viscous strain, εf , a consequence of the volume

fraction growth, h(t), and are mathematically formulated in [Bažant, 1977] and [Bažant and Prasannan,

1989a] (Figure 3.11).

The concept of the viscoelastic part is that each increment of v(t), dv(t), represents a deposited layer

on the surface of the solidified material. The increment volume, dv(t), is subjected to the same strain,

εv(t), which results in a parallel coupling of all the increment volumes.

For the mathematical formulation, Bažant introduces the concept of microstress, σg(v, t), in the solidified

matter (cement gel) at time t (Figure 3.11). A layer of thickness, dv(τ), is assumed to solidify and

bearing with the previously solidified matter at time τ . The sum of all the microstress since t = 0 is the

total macroscopic stress,
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Figure 3.11 – Solidification theory based on Kelvin chain model

σ(t) =

∫ t

τ=0

σg
[
v(τ), t

]
dv(τ) (110)

Considering that the solidifying material on the microscale is a non-aging and linearly viscoelastic mate-

rial, the macroscopic stress-strain relationship is given by,

εv(t)− εv(τ) =

∫ t

0

Φ(t− t′)σg
[
v(τ), t′

]
(111)

where,

• σg
[
v(τ), t′

]
= 0 for t′ < τ

• εv(t)− εv(τ) is the viscoelatic strain

• Φ(t− t′) is the microscopic creep compliance function.

The simplification is that Φ(t− t′) is a function of only one variable (t− t′), the loading duration, instead

of two variables (loading duration and age), as stated in previous formulations for the delayed behaviour

of concrete, described, for example, in [Bažant and Osman, 1976]. The Kelvin chain model shown in

Figure 3.11 represents the non-aging viscoelastic strains.

It is known that the creep curves change with increasing age for as long as 10 year (aging) and that

the development of new hydrates terminates much earlier. Therefore, is not possible to say that the

evolution of v(t) is only related to hydration. There are evidence that v(t) fraction continues to grow

after maximum hydration is reached as a consequence of the increase of bonds between solid matter

(polymerization).
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It is important to point out that each layer dv(τ) solidifies at a free state stress, σg
[
v(τ), τ

]
= 0. The

constitutive relations can be simplified when considering this hypothesis [Bažant, 1977],

ε̇v(t) =
1

v(t)
γ̇(t) =

1

v(t)

∫ t

0

Φ̇(t− t′)dσ(t′) (112)

where Φ̇(t− t′) = dΦ(t− t′)/dt and v(t) can is taken as a function of time and of empirical variables λ0,

m and α,

1

v(t)
=

(
λ0

t

)m
+ α (113)

and the variable γ(t) can be seen as the viscoelastic microstrain of the growing volume.

The second part of the creep strains is related to the viscous flow and its derivative can be represented

by,

ε̇f (t) =
σ(t)

η(t)
=
σ(t)

h(t)

∫ t

0

Ψ̇(t− t′)dσ(t′) (114)

where Ψ(t − t′) is the microscopic compliance viscous function of the solidified matter (non-aging),

η(t) = η0h(t) is the apparent macroscopic viscosity given by η(t) = t/q4 (Figure 3.11).

Therefore, when considering constant stress, σ(t′), one can write,

ε̇(t) = σĊ(t, t′) + ε̇0 (115)

Ċ(t, t′) =
Φ(t− t′)
v(t)

+
1

η(t)
(116)

J(t, t′) =
1

E0
+

∫ t

0

Ċ(t, t′)dτ =
1

E0
+

(
Φ(t− t′)
v(t)

+
1

η(t)

)
dτ (117)

where Ċ(t, t′) is the creep compliance rate and J(t, t′) is the creep compliance function.

The compliance rate can be written as a function of the material parameters

Ċ(t, t′) =
∂J(t, t′)

∂t
=

[
q2

(
λ0

t

)m
+ q3

]
nξn−1

λ0(1 + ξn) + q4
t

(118)

where q3 = αq2. The creep compliance, considering the initial value of ε(t, t′) = σ/E0, is,

J(t, t′) = q1 + q2Q(t, t′) + q3ln

[
1 +

(
t− t′

λ0

)n]
+ q4ln

(
t

t′

)
(119)

where J(t, t′) = ε(t, t′)/σ(t′), q1 = 1/E0 and,
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Q(t, t′) =

∫ t

t′

(
λ0

τ

)m
n(τ − t′)n−1

λn0 (1 + τ − t′)n
dτ (120)

Derived from solidification theory and proposed by Bažant and Baweja [Bažant and Baweja, 1995, 2000],

J(t, t′) can be described as the sum of q1, the elastic instantaneous strains due to unit stress, C0(t, t′),

the basic creep complaince and Cd(t, t′, t0), the drying creep compliance (Equation 121). For this work,

drying creep strains are not considered (t0 is the age of drying).

J(t, t′) = q1 + C0(t, t′) + Cd(t, t
′, t0) (121)

Basic creep compliance, C0(t, t′) in Equation 122, can be expressed as a linear combination of param-

eters and time-dependent variables [Bažant and Prasannan, 1989b]: the first part is responsible for the

aging viscoelastic compliance, the second for the non-aging viscoelastic compliance and the last one

for the flow compliance. It is usual to consider, for all types of concrete, n = 0.1, m = 0.5 and λ = 1 day.

C0(t, t′) = q2Q(t, t′) + q3 ln
[
1 + (t− t′)n

]
+ q4 ln

(
t

t′

)
(122)

whereQ(t, t′) is a binomial integral (Equation 120) with no analytical expression but can be approximated

by Equation 123,

Q(t, t′) = Qf (t′)

1 +

(
Qf
(
t′
)

Z (t, t′)

)r(t′)
−1/r(t′)

(123)

where,

r
(
t′
)

= 1.7
(
t′
)0.12

+ 8 (124)

Z
(
t, t′
)

=
(
t′
)−m

ln
[
1 +

(
t− t′

)n]
(125)

Qf
(
t′
)

=
[
0.086

(
t′
)2/9

+ 1.21
(
t′
)4/9

]−1

(126)

The approximation error is less than 1% for n = 0.1 and m = 0.5 [Bažant and Baweja, 2000]. The model

parameters, q1, q2, q3 and q4 can be obtained from linear regression fit to test results.

The static modulus of elasticity, for comparison with test results at a given age, can be calculated from

Equation 127, considering a stress duration, ∆ = t− t′ = 0.01 days,

E(t′) =
1

A0 + A1√
t′

(127)
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where A0 = q1 + q3ln(1 + ∆n) and A1 = q2ln(1 + ∆n).

3.9.5 Numerical formulation of solidification theory

Despite the integral nature of the creep analysis (Equation 107), it is possible to find an equivalence

between the integral-type creep law and a rate-type form.

Considering the solidification theory, the rheological model of the solidified matter is taken as a non-aging

Kelvin chain, where the viscoelastic microstrain, γ(t), is given by the sum of each Kelvin unit,

Eµγµ + ηµγ̇µ = σ, γ =

N∑
µ

γµ (128)

γ(t) = σ

N∑
µ

1

Eµ

(
1− e−(t−t′/τµ)

)
, τµ =

ηµ
Eµ

(129)

In the above equations, τµ , Eµ and ηµ are the retardation time, the modulus of elasticity and the viscosity

coefficient of the µ Kelvin unit.

Similarly, the microscopic creep compliance function, Φ(t−t′), can be approximated by a Dirichlet series,

Φ(t− t′) = A0 +

N∑
µ

Aµ

(
1− e−(t−t′/τµ)

)
(130)

Bažant and Xi [1995] recommend the use of the continuous retardation spectra, L(τµ), and a logarithmic

discretization of retardation times for the determination of the Aµ coefficients,

τ2 = 0.5, τ1 = 1× 10−5τ2, τµ = 10τµ−1, µ = 3, 4, · · · (131)

Aµ = L(τµ)∆(ln(τµ)) = L(τµ)ln10 (132)

L(τµ) =

[
−2n2(3τ)2n−3[n− 1− (3τ)n]

[1 + (3τ)n]3

]
(3τ)3

2
q2+

+

[
n(n− 2)(3τ)n−3[n− 1− (3τ)n]− n2(3τ)2n−3

[1 + (3τ)n]2

]
(3τ)3

2
q2

(133)

Bažant et al. [2004] determine the coefficient A0 from the remaining area of the spectra not represented

by the chosen retardation times (for τ < τ1),
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A0 =
1

ξN

∫ ξN

0

Φ(ξ)−
N∑
µ

Aµ

(
1− e−ξ/τµ

) dξ (134)

where ξN is maximum retardation time and under the solidification theory hypothesis of the Φ(t − t′) =

q2ln (1 + ξn), ξ = (t − t′)/λ0 and λ0 = 1.0. The coefficients for the viscoelastic microstrains, Eµ, are

obtained by Eµ = Aµ/q2.

Considering that the stress varies linearly between a given time step (ti, ti+1), σ(t) = σi + ∆σ, the

component of each Kelvin unit can be calculated from,

γµ,i+1 = γµ,ie
−∆yµ +

σi
Eµ

(1− e−∆yµ) +
1− λµ
Eµ

∆σ, ∆yµ =
∆t

τµ
, λµ =

1− e−∆yµ

∆yµ
(135)

The total increment of viscoelastic microstrain, ∆γ, can be obtained from the sum of each Kelvin unit,

∆γ =
∑N
µ=1(γi+1 − γi) and an incremental form can be written,

∆γ =

N∑
µ=1

(
1− λµ
Eµ

)
∆σ + ∆γ′′ (136)

∆γ′′ =

N∑
µ=1

∆γ′′µ =

N∑
µ=1

(
σi
Eµ
− γµ,i

)(
1− e−∆γµ

)
(137)

The total increment of viscoelastic strain, ∆εv, is given by Equation 112,

ε̇v(t) =
1

v(t)
γ̇(t) w ∆εv =

1

v(t∗)
∆γ =

1

v(t∗)

 N∑
µ=1

(
1− λµ
Eµ

)
∆σ + ∆γ′′

 (138)

where t∗ = t0 + [(ti+1 − t0)(ti − t0)1/2] which represents the middle of the time step in the logarithmic

time scale.

Taking into account the flow strain increment, ∆εf = q4σ∆t/t∗, and the increment of instantaneous

elastic strain, q1∆σ, one can write the full incremental quasi-elastic stress-strain relation,

∆ε =
∆σ

E′′
+ ∆ε′′ (139)

where,

1

E′′
= q1 +

A0

v(t∗)
+

1

v(t∗)

N∑
µ=1

(
1− λµ
Eµ

)
(140)

∆ε′′ =
∆γ′′

v(t∗)
+
q4σ(t∗)∆t

t∗
(141)
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3.10 Numerical incremental scheme for fast simulation of creep behaviour
using DEM

3.10.1 General procedures

The numerical stability of explicit integration schemes rely on a maximum time step value that can be

very small. To simulate the creep behaviour of structural systems, such as rock or concrete, the total

calculation time can be expensive. Feng et al. [2003] proposed a numerical scheme for overcoming the

need of a large number of steps based on the introduction of incremental contact forces equivalent to

the expected creep deformation. This scheme make use of both the dynamic relaxation procedure to

obtain a fast equilibrium without overshooting and of the viscoelastic contact model (although indirectly).

Figure 3.12 – General DEM cycle with incremental creep constitutive model [Feng et al.,
2003]

The procedure is divided into two main parts shown in Figure 3.12: dynamic relaxation, ∆t, for converg-

ing to the solution by dynamic relaxation, using a time increment, ∆t (similar to the procedure defined

earlier in §3.1); and viscoelastic constitutive model ∆T for large time increments, ∆T , for setting the in-

cremental contact force obtained from the creep constitutive model (introduced into the code after each

dynamic relaxation convergence).

Considering the increment of viscoelatic displacement, ∆Uvisco, one can consider an equivalent in-

cremental contact force, which can be added to the contact forces in the model and introducing an

unbalanced state, which is set to equilibrium through dynamic relaxation, using the time increment, ∆t.
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Once the equilibrium is obtained for the time step, Ti+1, a new time increment is imposed, ∆T , the new

incremental viscoelastic displacement, ∆Uvisco, is calculated and the incremental contact forces, ∆Fc,

is again added into each contact.

3.10.2 Burger model

Considering a constant applied force, F (t) = F0, the viscoelastic part of the Burger’s model at a given

time, Ti, is given by,

Uvisco(T ) =
F0

ηM
Ti +

F0

EK

(
1− e

(
−EKηK Ti

))
(142)

For a given time increment, ∆T = Ti+1 − Ti, the increase of viscoelastic displacement is,

∆Uvisco(T ) =
F0

ηM
∆T +

F0

EK

(
e

(
−EKηK Ti

)
− e

(
−EKηK Ti+1

))
(143)

∆Fc(Ti+1) = −EM∆Uvisco(T ) (144)

Fc(Ti+1) = Fc(Ti) + ∆Fc(Ti+1) (145)

3.10.3 Solidification theory

Considering a constant applied force, F (T = 0) = F0, for a given time increment, ∆T = Ti+1 − Ti,

the increase of viscoelastic strain for the solidification theory is given by the incremental quasi-elastic

stress-strain relation (Equations 139, 140 and 141) and, therefore, the incremental contact forces, ∆Fc

are obtained from

∆ε(Ti) = ∆ε′′(Ti) ≡ ∆Uvisco(Ti) = ∆U ′′(Ti) (146)

∆σ(Ti+1) = ε′′(Ti)E
′′(Ti) ≡ ∆Fc(Ti+1) = ∆Uvisco(Ti)E

′′(Ti) (147)

Fc(Ti+1) = Fc(Ti) + ∆Fc(Ti+1) (148)

The first displacement increment, Uelastic(T = 0), is given by a dynamic relaxation procedure considering

elastic behaviour and the modulus of elasticity at the age of loading, given by Equation 127.

32 LNEC - Proc. 0403/112/20181



CODE IMPLEMENTATION OF PARTICLE BASED DISCRETE ELEMENT METHOD FOR CONCRETE VISCOELASTIC MODELLING

3.11 C++ code implementation for elastic and viscoelastic behaviour

For the implementation of the DEM, the former concepts and procedures were structured into a C++

computational code [Microsoft Corporation, 2010]. Figure 3.13 shows a schematic view of the code’s

structure, divided into three main parts. The first SETUP part deals with the definition of properties,

geometries, boundary and analysis conditions. It is possible to generate a regular, rectangular or hexag-

onal, mesh, and to built input data files for a generic mesh (including several types of materials). The

second part, CYCLE, iterates over time and applies the law of motion and the law of forces to all the

particles and contacts until the convergence criteria is reached and the third part, OUTPUT, is where

the main results are written into ASCII files, including data files (.dad) and files with the undeformed and

deformed meshs (using .vtk files).

The complete algorithm is summarized in the following steps:

SETUP

1. Generation of particle assembly (predefined mesh, rectangular or hexagonal, or user-defined

mesh);

2. Definition of contacts;

3. Definition of boundary and loading conditions;

4. Definition of real or scaled masses;

5. Calculation of the critical time step or the scaled masses;

6. Definition of the stopping criteria (maximum simulation time, maximum number of steps and con-

vergence criteria using force and displacement tolerances);

7. Set type of damping;

8. Set constitutive law;

9. Calculation of analytical frequency, ωanalyt, for global damping;

10. Calculation of the initial velocities and positions (obtained from an undamped system);

CYCLE

11. Law of motion:

(a) Calculation of new velocities;

(b) Calculation of new positions;

(c) Calculation of displacements;

(d) Update of the velocities and positions.

12. Law of forces:
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(a) Calculation of overlap;

(b) Calculation of contact position;

(c) Calculation of contact velocity;

(d) Calculation of incremental contact displacement;

(e) Calculation of incremental contact forces;

(f) Calculation of total contact forces;

(g) Calculation of total particle forces;

(h) Updates of the total particle forces.

13. Recalculation of critical time step or scaled masses;

14. Recalculation of natural frequency, ω0;

15. Check convergence criteria (unbalanced force or displacement criteria). If convergence is reached,

exit; otherwise, go to 11.

OUTPUT

The output files are composed by ".dad" file types with the results obtained for the control particles,

including particle ID, step, time, particle position, particle velocity and particle forces, a ".info" file with

the information about the analysis and ".vtk" files for the graphical representation of the system.
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Figure 3.13 – C++ discrete element method code flowchart
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Figure 3.14 shows the structure used for the code implementation using C++. The definition of classes

"Particle" and "Contact" within the "Domain" allows for the use of object-oriented programming and for

each problem "Particle" and "Contact" objects are created were their properties and specific "functions"

are predefined.

The Particle.cls class file includes the properties regarding the rigid particles, such as the radius, the

specific mass, the position ()displacements and rotations) the linear velocities and angular velocities

and defines functions to deal with those properties. The Contact.cls class file defines the properties and

functions related to the interaction of two particles, such as the ID of particle A and particle B, the contact

normal and shear stiffness.

The global functions are defined in the Domain.cls class file which controls the SETUP, CYCLE and

OUTPUT phases. In the CYCLE phase, the domain class calls the law of motion and the law of forces

functions for each time step until the convergence criteria is reached.

In the OUTPUT phase the main results for a set of particles (ID = N ) and contacts (ID = M ) are

written into ASCII files (..._part_ID_N.dad and ..._cont_ID_M.dad). The results are also written in .vtk

format for the representation into a graphical view using, for example, the ParaView software [Ayachit,

2005].

Figure 3.14 – C++ classes

36 LNEC - Proc. 0403/112/20181



CODE IMPLEMENTATION OF PARTICLE BASED DISCRETE ELEMENT METHOD FOR CONCRETE VISCOELASTIC MODELLING

3.12 C++ code implementation of numerical incremental scheme for fast
simulation of creep behaviour

The complete algorithm is summarized in the following steps:

1. Generation of particle assembly (rectangular or hexagonal);

2. Definition of contacts;

3. Definition of boundary and loading conditions;

4. Definition of real or scaled masses;

5. Calculation of the critical time step or the scaled masses;

6. Definition of the stopping criteria (maximum simulation time or maximum number of steps);

7. Set type of damping;

8. Set constitutive law;

9. Calculation of the initial velocities and positions (obtained from an undamped system);

10. Start the cycle for time-dependent behaviour:

(a) Setting creep time, Ti = 0, creep time increment, ∆T and maximum creep time of analysis,

Tmax:

(b) Starting the cycle for dynamic relaxation, considering DR time, t and a DR time step, ∆t:

i. Law of motion:

ii. Law of forces:

iii. Recalculation of critical time step or scaled masses;

iv. Recalculation of natural frequency, ω0;

v. Checking convergence criteria (unbalanced force or displacement criteria). If conver-

gence is reached, exit. Otherwise, go to i).

(c) Increase of time to Ti+1. If Ti+1 ≥ Tmax, exit. Otherwise, return to b).

(d) Calculation of viscoelastic displacement increment, ∆Uvisco, for Ti+1;

(e) Calculation of incremental contact force, ∆Fc, add to the contact force, Fc;
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4| Verification of code implementation

4.1 Testing models

The code verification was made by testing the behaviour of three types of geometries with different types

of loadings, varied analysis conditions and implemented constitutive models: elastic (Hooke’s model),

viscoelastic (Burger’s model) and viscoelastic with aging (solidification theory).

The following section shows the results from the three geometries and loading conditions, for both elastic

and viscoelastic behaviour, namely:

1. Two particles (2× 1) in pure tension (Figure 4.16);

2. Four particles (2× 2) in shear (Figure 4.25);

3. Cantilever beam test with 20× 5 particles in bending (Figure 4.32).

For the elastic model and for each geometry, several analysis were made in order to test the implemen-

tation, namely with:

1. No damping;

2. Global viscous damping, with analytical estimate of ω0, using:

(a) Critical time step;

(b) Density scaling.

3. Adaptive dynamic relaxation (ADR), using:

(a) Critical time step;

(b) Density scaling.

4. Local non-viscous damping, using:

(a) Critical time step;

(b) Density scaling.

Finally, the verification of the models is also obtained considering the three type of macro-micro ap-

proximation, defined previously in Section 3.8. For the Burger’s model and for each geometry, several

analysis were made in order to test the implementation, namely, with:

1. No damping;

2. Adaptive dynamic relaxation (ADR):
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For the aging model based on the solidification theory, two predefined meshs (2×1 particles and 20×5

particles) were tested in order to reproduce the concrete test results of Rostasy et. al. from 1971 [Bažant

and Prasannan, 1989a]:

1. Adaptive dynamic relaxation (ADR):

(a) Critical time step.

For testing the numerical incremental scheme for fast behaviour simulation using DEM (§3.10), the two

delayed models were used, Burger’s model and aging model, for both normal and shear loadings (2×1

particles and 20×5 particles). These examples combine the incremental scheme for predefined large

time steps (∆T ) and an adaptive dynamic relaxation (ADR) using the critical time step (∆t) for obtaining

the equilibrium at each time, Ti.

4.2 Elastic behaviour - Hooke’s model

4.2.1 Model properties

For the static elastic behaviour (Hooke’s model) the considered properties are presented in Table 4.2.

Table 4.2 – Mechanical properties of Hooke’s model testing examples

radius

[m]

specific mass

[ton/m3]

kn

[kN/m]

ks

[kN/m]

F

[kN ]

v

[m/s]

50.0 1000 1.35× 109 1.35× 109 100 1× 10−5

The dynamic properties of the test models, the natural frequencies, ωi, can be obtained from the analyt-

ical solution of longitudinal and transverse vibrations of continuous bars [Clough and Penzien, 1993].

For longitudinal vibrations, considering u(x, t) the displacements in the longitudinal direction of a bar

with modulus of elasticity, E, and cross-section, A, one can separate the harmonic time variation Y (t)

and the deformed shape φ(x) representing the behaviour (u(x, t) = φ(x)Y (t). The differential equation

of motion of u(x, t) does not depend on Y (t),

φ̈(x) +

(
ω

c0

)2

φ(x) = 0, c0 =

√
EA

m
(149)

and solution for φ(x) is,

φ(x) = A sin

(
ω

c0
x

)
+B cos

(
ω

c0
x

)
(150)

where ω is the circular frequency of the system for time-dependent behaviour, Y (t).

For a cantilever bar with L length, fixed at one end and free in another, one have φ(x = 0) = 0 and

φ̈(x = 0) = 0 as boundary conditions and the following natural frequencies, ωi, are obtained from,
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ωi =
(2n− 1)πc0

2L
(151)

Similarly, for transversal vibrations, considering v(x, t) = φ(x)Z(t) the displacements in the transversal

direction of a bar with E-modulus, E, and inertia, I, the differential equation of motion (eliminating the

time dependent behaviour, Z(t)) and solution for φ(x) are,

d4φ(x)

dx4
− φ(x)ω2 m

EI
= 0 (152)

φ(x) = A sinh (αx) +B cosh (αx) + C sin (αx) +D cos (αx) (153)

where ω is the circular frequency of the system for time-dependent behaviour, Z(t) and α = 4
√
ω2 m

EI .

For a cantilever bar with L length, fixed at one end and free in another, one have φ(x = 0) = 0,
d2φ
dx (x = 0) = 0, φ̇(x = L) = 0 and d4φ

dx (x = L) = 0 as boundary conditions and the following natural

frequencies, ωi, are obtained from,

ωi = α2
i

√
EI

m
(154)

where, for the first natural frequency, α1 = 1.875
L .

As stated in §3.4.3, global viscous damping relies on an estimate of the natural system frequency. This

estimate can be obtained by the Rayleigh quotient or by an analytical estimate, using equivalence to

continuous beams.

For the analytical calculation of the dynamic properties, an equivalence between discrete model and

continuous solution is presented in Figure 4.15 and Table 4.3 shows the equivalent properties. Using

this equivalence for each case study, both dynamic properties for real masses and scaled masses are

presented in Tables 4.4 and 4.5.

Figure 4.15 – Equivalence between discrete model and continuous beam
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Table 4.3 – Equivalence between properties of analytical solution and properties of the test
models

Eeq Aeq Ieq Leq mreal
eq mscaled

eq

kn 2×R×Ny × t t×(2×R×Ny)
3

12
2×R× (Nx − 1) γ ×Aeq

m
1part.
scaled

×N

Leq

In Figure 4.15 and in Table 4.3 N , Nx and Ny are the total number of particles, the number of particles

in the horizontal axis and the number of particles in the vertical axis, respectively.

For the test models, Tables 4.4 and 4.5 show the values of the first natural frequency and the damping

coefficient.

Table 4.4 – Dynamic properties of test models - real masses

Test model
ω1

[rad/s]

cc

[1/s]

c(ξ = 0.7/ξ = 0.2)

[1/s]
Safety factor

ωADR

[rad/s]

cADR

[1/s]

2× 1 0.46 0.92 0.64/0.18 1.0 0.43 0.87

2× 2 5.9 11.8 8.3/2.4 1.2 1.11 2.22

20× 5 0.1 0.2 0.1/0.04 1.2 0.005 0.010

Table 4.5 – Dynamic properties of test models - scaled masses

Test model
ω1

[rad/s]

cc

[1/s]

c(ξ = 0.7/ξ = 0.2)

[1/s]
Safety factor

ωADR

[rad/s]

cADR

[1/s]

2× 1 1.11 2.22 1.55/0.44 1.0 1.04 2.09

2× 2 1.01 2.02 1.41/0.40 1.2 0.24 0.49

20× 5 2.38 4.76 3.33/0.95 1.2 0.006 0.011

The following tables show the mechanical and dynamic properties and time step used for each analysis,

considering real and scaled masses.

Table 4.6 – No damping model characteristics using critical time step

Model properties mreal, Ireal, ktrans, krot

Time step ∆tcrit - Eq. 51

Table 4.7 – No damping model characteristics using scaled masses

Model properties mscaled, Iscaled, ktrans, krot

Time step ∆t = 1.0
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Table 4.8 – Global viscous damping model characteristics, using critical time step

Model properties mreal, Ireal, ktrans, krot

Time step ∆crit (Eq. 51)

Fundamental frequency ω0 = ωanalyt (Eqs. 151, 154, Table 4.4)

Critical global damping coefficient cc = 2ωanalytmreal

Damping ratio ξ (user-defined)

Global damping coefficient c = ccξ (Table 4.4)

Table 4.9 – Global viscous damping model characteristics, using density scaling

Model properties mscaled, Iscaled (Eqs. 57, 58), ktrans, krot

Time step ∆crit = 1.0 sec

Fundamental frequency ω0 = ωanalyt < 2.0 (Eqs. 151, 154, Table 4.5)

Critical global damping coefficient cc = 2ωanalytmscaled

Damping ratio ξ (user-defined)

Global damping coefficient c = ccξ (Table 4.5)

Table 4.10 – Global viscous damping model characteristics, using adaptive dynamic
relaxation and critical time step

Model properties mreal, Ireal, ktrans, krot

Time step ∆crit (Eq. 51)

Fundamental frequency ω0 (Rayleigh quotient: Eqs. 59, 60, 61)

Critical global damping coefficient cc = 2ωanalytmreal

Damping ratio ξ (user-defined)

Global damping coefficient c = ccξ (Table 4.4)

Table 4.11 – Global viscous damping model characteristics, using adaptive dynamic
relaxation and density scaling

Model properties mscaled, Iscaled, ktrans, krot

Time step ∆crit = 1.0 sec

Fundamental frequency ω0 < 2.0 (Rayleigh quotient: Eqs. 59, 60, 61)

Critical global damping coefficient cc = 2ωanalytmscaled

Damping ratio ξ (user-defined)

Global damping coefficient c = ccξ (Table 4.5)
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4.2.2 Two particles in tension, one contact test

The first test to the code implementation is the case of two particles loaded in tension. Figure 4.16

shows the assembly, the boundary conditions and the loading conditions. The considered properties are

defined in Tables 4.2, 4.4 and 4.5. The equilibrium state is represented in Figure 4.17 where the reactions

and applied forces are shown, as well as the normal contact forces, using ParaView visualisation.

Figure 4.16 – Example 2×1 particles in pure tension

Figure 4.17 – Steady state for 2×1 particles in pure tension (red vector - reactions; blue
vector - applied forces)

The results of the two particles in tension using real masses and the critical time step (Figure 4.18) and

scaled masses and the unit time step (Figure 4.19) show the equivalence of the both analysis (results for

the particle ID=2). The displacements oscillate between zero and 1.481 × 10−7 with and average value

of 7.407 × 10−8, which is the static solution for the structural system. The unbalanced forces oscillate

also between −100 kN and 100 kN since the system has no damping forces to reach equilibrium.

To obtain the steady state solution for the structural system and under given applied loadings, damping

forces can be introduced. Figures 4.20, 4.21, 4.22 and 4.23 show the results of the two-particles mesh

considering the global damping option for two user-defined damping ratio and for the adaptive dynamic

relaxation (ADR). For a small damping ratio there are still some oscillatory behaviour around the static

solution but, after 20 steps, the dynamic behaviour is reduced and a steady state regime is obtained,
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Figure 4.18 – Results for 2×1 particles in pure tension with no damping using real masses
under applied force

where the unbalanced forces are close to zero. The adaptive dynamic relaxation for the two-particle

example has a small overshooting of the solution due to the initial conditions (initial velocity obtained from

an undamped system). Figure 4.24 shows the comparison between the different analyses using global

damping. It is possible to verify the influence of the damping ratio on the development of displacements

during stepping. The fastest convergence is obtained for the higher values of damping coefficient (≈ 1.0),

i.e. for values of damping coefficients close to the critical damping coefficient.

44 LNEC - Proc. 0403/112/20181



CODE IMPLEMENTATION OF PARTICLE BASED DISCRETE ELEMENT METHOD FOR CONCRETE VISCOELASTIC MODELLING

0 5 10 15 20
−150

−100

−50

0

50

100

150
a) Unbalanced forces

Time (s)

U
nb

al
an

ce
d 

F
x (

kN
)

 

 

F
x

0 5 10 15 20
−2

−1

0

1

2
x 10

−7 b) Displacements

Time (s)

D
is

pl
ac

em
en

ts
 (

m
)

 

 

d
x

0 5 10 15 20
−1

−0.5

0

0.5

1
x 10

−7 c) Linear velocities

Time (s)

Li
ne

ar
 v

el
oc

iti
es

 (
m

/s
)

 

 

vel
x

Figure 4.19 – Results for 2×1 particles in pure tension with no damping using scaled
masses under applied force
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Figure 4.20 – Results for 2×1 particles in pure tension with global damping (ξ = 0.7) using
scaled masses under applied force
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Figure 4.21 – Results for 2×1 particles in pure tension with global damping (ξ = 0.2) using
scaled masses under applied force
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Figure 4.22 – Results for 2×1 particles in pure tension using adaptive dynamic relaxation
(ADR) and real masses under applied force
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Figure 4.23 – Results for 2×1 particles in pure tension using adaptive dynamic relaxation
(ADR) and scaled masses under applied force
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Figure 4.24 – Comparison of the results for 2×1 particles in pure tension using different
global damping coefficients, adaptive dynamic relaxation under applied force and scaled

masses
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4.2.3 Four particles in shear test

The second test corresponds to the example of four particles loaded in shear. Figure 4.25 shows the

assembly, the boundary conditions and the loading conditions. The considered properties are defined

in Tables 4.2, 4.4 and 4.5. The equilibrium state is represented in Figure 4.26 where the reactions and

applied forces are shown, as well as the normal contact forces. Similarly to the two-particle example,

the main results for each analysis are presented in Figure 4.27 to Figure 4.30. Figure 4.31 shows the

comparison between the different analyses using global damping and ADR, where the efficiency of the

ADR method is demonstrated. The number of calculation steps necessary for convergence to the static

solution of the similar to the number of steps obtained with the critical damping coefficient.

Figure 4.25 – Example 2×2 particles in pure shear, rectangular mesh

Figure 4.26 – Equilibrium state for 2×2 particles in pure shear (red vector - reactions; blue
vector - applied forces)
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Figure 4.27 – Results for 2×2 particles in pure shear with no damping using scaled masses
under applied forces
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Figure 4.28 – Results for 2×2 particles in pure shear using global damping (ξ = 0.7) and
scaled masses under applied forces
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Figure 4.29 – Results for 2×2 particles in pure shear using global damping (ξ = 0.2) and
scaled masses under applied forces
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Figure 4.30 – Results for 2×2 particles in pure shear using adaptive dynamic relaxation
(ADR) and scaled masses under applied forces
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Figure 4.31 – Results for 2×2 particles in pure shear using different global damping
coefficients, adaptive dynamic relaxation and scaled masses
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4.2.4 Regular cantilever beam test

The third test uses one-hundred particles assembly in bending. Figures 4.32 shows the rectangular

assembly, the boundary conditions and the loading conditions. The considered properties are defined in

Tables 4.2, 4.4 and 4.5. The steady state is represented in Figures 4.26 and 4.33b where the reactions

and applied forces are shown, as well as the normal contact forces, for the rectangular mesh and the

hexagonal mesh. Similarly to the two-particle example, the main results for each analysis are presented

in Figure 4.34 to Figure 4.36.

Figure 4.37 shows the main results of the analysis using the local damping, where the damping forces

are calculated as a function of the particle force and applied to the system in the motion law with the

reverse sign decreasing the velocities at each time-step.

Figure 4.32 – Example 20×5 particles in bending, rectangular mesh

(a)Rectangular assembly (b)Hexagonal assembly

Figure 4.33 – Results for 20×5 particles in bending
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Figure 4.34 – Results for 20×5 particles in bending with no damping using scaled masses
under applied forces
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Figure 4.35 – Results for 20×5 particles in bending using adaptive dynamic relaxation (ADR)
and real masses under applied forces

LNEC - Proc. 0403/112/20181 53



CODE IMPLEMENTATION OF PARTICLE BASED DISCRETE ELEMENT METHOD FOR CONCRETE VISCOELASTIC MODELLING

0 1000 2000 3000 4000 5000
−100

−50

0

50

100
a) Unbalanced forces

Step

U
nb

al
an

ce
d 

F
y (

kN
)

 

 

F
y

0 1000 2000 3000 4000 5000
0

1

2
x 10

−4 b) Displacements

Step

D
is

pl
ac

em
en

ts
 (

m
)

 

 

d
y

0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1
x 10

−6 c) Linear velocities

Step

Li
ne

ar
 v

el
oc

iti
es

 (
m

/s
)

 

 

vel
y

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1
d) Damping coefficient

Step

D
am

pi
ng

 c
oe

ffi
ci

en
t (

1/
s)

 

 

Damping coeff.

Figure 4.36 – Results for 20×5 particles in bending using adaptive dynamic relaxation (ADR)
and scaled masses under applied forces
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Figure 4.37 – Results for 20×5 particles in bending with local damping (α = 0.2) and scaled
masses under applied forces
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4.3 Verification test for the cantilever beam with elastic behaviour

4.3.1 General aspects

Using the cantilever beam test, this section includes a theoretical example for the verification of the

discrete method for the elastic analysis considering: i) beam equivalence; ii) elasticity theory; and iii)

energy method.

4.3.2 Beam equivalence

The rectangular assembly used for this verification has 20 × 5 particles with a radius of 50 m therefore,

the equivalence between micro and macro properties follows,

kn =
EA

L
= E (155)

ks =
12EI

L3
= E (156)

For simplicity kn and ks will be considered to be 10.0×109 kN/m. This assembly with an applied vertical

force of 200 kN for each particle at the tip of the cantilever (5 particles) has a vertical displacement of

2.373× 10−5 kNm.

The example used can be considered as a length of (20− 1)× 50× 2 = 1900 m and 5× 50× 2 = 500 m

height beam with a width of 1 and a load of 5 × 200 = 1000 kN at the tip of the beam. It is assumed a

modulus of elasticity equivalent to the kn and ks considered for the former examples.

According to the theory of elasticity the deflection at the tip of the beam (Ibeam = 1.0×5003

12 = 1.04×107 m4)

is given by,

δ =
FL3

beam

3EIbeam
=

1000× 19003

3× 10.0× 109 × 1.04× 107
= 2.194× 10−5m (157)

The difference between discrete model and elastic theory is approximately 8.1%.

A refinement of the particle assembly results in a decrease of the difference between DEM displacement

and analytical displacement. Table 4.12 shows the results for different particle assemblies and the

difference to analytical beam displacement. The difference decreases significantly for assemblies with

smaller particles.

4.3.3 Elasticity theory

Using the same model characteristics as before, the microparameters according to the elasticity theory,

follow from the Equations (71), (72), (73) and (74).
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Table 4.12 – Beam equivalence for different assembly refinements

Assembly dy - DEM (m) dy - Analytical (m) Difference

20×5 2.37× 10−5

2.194× 10−5

8.2%

39×5 2.30× 10−5 4.9%

77×20 2.28× 10−5 3.8%

E′ =
E

1− ν2
= 10.42× 109 kN/m (158)

E′′ =
E

2 (1− ν2)
= 4.17× 109 kN/m (159)

kn =
E′h

L
t = E′ (160)

ks =
E′′h

L
t = E′′ (161)

The vertical displacements for the rectangular assemblies, with different refinements, using the calcu-

lated microparameters are given in Table 4.13.

Table 4.13 – Elasticity theory approximation for different assembly refinements

Assembly dy - DEM (m) dy - Analytical (m) Difference

20×5 2.410× 10−5

2.194× 10−5

9.8%

39×5 2.339× 10−5 6.6%

77×20 2.318× 10−5 5.7%

4.3.4 Energy method

According to an equivalence of strain energy [Murat et al., 1992; Masuya et al., 1994], for hexagonal

arrangement of particles, the contact stiffness can be defined as,

kn =

√
3

3 (1− ν)
E = 7.22× 109 kN/m (162)

ks =

√
3 (1− 3ν)

3 (1− ν2)
E = 2.41× 109 kN/m (163)

The vertical displacements for the hexangular assembly using the calculated microparameters are shown

in Table 4.14. The analytical solution was obtained for an equivalent beam considering the height of the
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hexangular assembly (H = 446.41 m).

Table 4.14 – Energy method approximation for different assembly refinements

Assembly dy - DEM (m) dy - Analytical (m) Difference

20×5 3.909× 10−5

3.084× 10−5

26.8%

39×5 3.694× 10−5 19.8%

77×20 3.566× 10−5 15.6%
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4.4 Viscoelastic behaviour - Burger model

4.4.1 General aspects

For the viscoelastic behaviour using the Burger’s model similar tests were made to verify the code

implementation. The model properties are presented in Table 4.15.

Table 4.15 – Mechanical properties of Burger’s model testing examples

radius

[m]

specific mass

[ton/m3]

EM

[kN/m]

ηM

[kNs/m]

EK

[kN/m]

ηK

[kNs/m]

F

[kN ]

v

[m/s]

0.05 2600 1.0× 106 1.0× 107 1.0× 106 1.0× 106 1000 0.001

4.4.2 Two particles in tension, one contact test

The first test to the code implementation is the case of two particles loaded in tension and under an

imposed velocity. Figure 4.16 shows the assembly, the boundary conditions and the loading conditions.

The considered properties are defined in Table 4.15. The main results are presented in Figure 4.38

and Figure 4.39. For this example a comparison with a DEM simulation using Particle Flow Code 2D,

PFC2D [Itasca Consulting Group Inc., 2008], was made. The Burger’s model is available in PFC2D as

a constitutive model of the interaction between contacts and, therefore, it was possible to verify the code

implementation, for both applied forces and imposed velocities in particle ID=2. The PFC2D uses a local

damping for obtaining the steady state solution (default value of α=0.7). For this comparison, the real

masses were used and a time step of 0.001 sec was considered.

The results show that, considering no damping, the solution has an oscillatory behaviour during a long

period of time and overshoots the analytical solution (§3.9.2). Using a combined adaptive dynamic

relaxation method applied to the Burger’s model, the system’s response is close to the analytical solution

(except for the first steps) and does not overshoot the solution. The PFC2D response, using local

damping, has an oscillatory behaviour during the first period of time.

For this example of two-particles, using Burger’s model, an imposed velocity was applied to the particle

ID=2 and the obtained solution validates the code implementation, since it follows the analytical solution

given in §3.9.2, for imposed displacements (Figure 4.40).
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Figure 4.38 – Results for 2×1 particles in pure tension with no damping and real masses for
applied forces
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Figure 4.39 – Results for 2×1 particles in pure tension using adaptive dynamic relaxation
(ADR) and real masses for applied forces
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Figure 4.40 – Results for 2×1 particles in pure tension using adaptive dynamic relaxation
(ADR) and real masses for imposed velocity
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4.4.3 Four particles in shear test

The second example is the case of four particles loaded in shear. Figure 4.25 shows the assembly, the

boundary conditions and the loading conditions. The considered properties are defined in Table 4.15.

The main results are presented in Figure 4.41 and Figure 4.42.

0 0.2 0.4 0.6 0.8

−600

−400

−200

0

200

400

600

800

a) Unbalanced forces

Time

U
nb

al
an

ce
d 

F
y (

kN
)

 

 

F
y

0 0.2 0.4 0.6 0.8

−2

0

2

4

6

x 10
−3 b) Displacements

Time

D
is

pl
ac

em
en

ts
 (

m
)

 

 

d
y

0 0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

c) Linear velocities

Time

Li
ne

ar
 v

el
oc

iti
es

 (
m

/s
)

 

 

vel
y

Figure 4.41 – Results for 2×2 particles in pure tension with no added damping using real
masses under applied forces
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Figure 4.42 – Results for 2×2 particles in pure tension using adaptive dynamic relaxation
(ADR) and real masses under applied forces
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4.4.4 Regular cantilever beam test

The third example is the case of one-hundred particles loaded in bending. Figure 4.32 shows the as-

sembly, the boundary conditions and the loading conditions. The considered properties are defined in

Table 4.15. The main results are presented in Figure 4.43 and Figure 4.44.

The results show that the use of adaptive dynamic relaxation introduces a transition period where the

system is being damped to the steady state solution (but it does not represents the actual viscoelastic

behaviour, Figure 4.44).
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Figure 4.43 – Results for 20×5 particles in pure tension with no damping and real masses
for applied forces
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Figure 4.44 – Results for 20×5 particles in pure tension using adaptive dynamic relaxation
(ADR) and real masses for applied forces
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4.5 Aging model based on the solidification theory

4.5.1 General aspects

The aging model based on the solidification theory was implemented in order to take into account the

delayed behaviour of concrete. Two basic examples show the response of the implementation, in pure

tension and in bending. The properties of the aging model were obtained from the available data from

the experimental work of Rostasy et. al. (available in [Bažant and Prasannan, 1989a]) and fitted to the

model proposed by the solidification theory . The model parameters are presented in Table 4.16.

Table 4.16 – Mechanical properties of aging model based on solidification theory testing
examples

radius

[m]

specific mass

[ton/m3]

t′

[days]

q1

[×10−6/MPa]

q2

[×10−6/MPa]

q3

[×10−6/MPa]

q4

[×10−6/MPa]

F

[kN ]

v

[m/s]

0.05 2600 28 5.961 9.311 3.539 3.336 1000 0.001

As stated in § 3.9.5, the rate-type formulation of the aging model given by solidification theory implies the

determination of the parameters of a nonaging Kelvin chain related with development of the viscoelastic

microcompliance, Φ(t), following the described procedure. Figures 4.45 and 4.46 show the contribution

of each Kelvin chain into the definition of the nonaging microcreep compliance of the solidifying material

and the fit to the Rostasy et. al. creep data from 1971 [Bažant and Prasannan, 1989a].

Table 4.17 – Parameters of the Kelvin chain model for the creep compliance, Φ(t− t′)

Kelvin element, i Retardation time, τ i Kelvin modulus, 1/Ei(t0)

[days] [1/MPa]

1 5.0× 10−6 4.7222× 10−7

2 0.5 1.0133× 10−6

3 5.0 1.1370× 10−6

4 50 1.2589× 10−6

5 500 1.3761× 10−6

6 5000 1.4858× 10−6
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Figure 4.45 – Kelvin chain contributions to the nonaging viscoelastic compliance, Φ(t− t′)
related to Rostasy et. al. creep data
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Figure 4.46 – Fit of the solidification theory rate-type form to the Rostasy et. al. creep data
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4.5.2 Two particles in tension, one contact test

The first test to the code implementation is the case of two particles loaded in tension. Figure 4.16

shows the assembly, the boundary conditions and the loading conditions. The considered properties

are defined in Tables 4.16 and 4.17. The main results are presented in Figure 4.47 and Figure 4.48.

Using the combined adaptive dynamic relaxation method applied to the aging model based on the so-

lidification theory, the system’s response is close to the analytical solution and does not overshoot the

solution (Figure 4.47).
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Figure 4.47 – Results for 2×1 particles in pure tension using ADR and real masses for
applied force

4.5.3 Regular cantilever beam test

The second test was is the case of a bending cantilever, with one-hundred particles, 20× 5 (Figure 4.32).

The model properties and forces were taken similar to the former test example and Figure 4.48 show the

obtained results.
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Figure 4.48 – Results for 2×1 particles in pure tension using ADR and real masses for
applied force
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4.6 Numerical incremental scheme for fast creep behaviour

4.6.1 General aspects

This section presents the results obtained for the numerical incremental scheme for fast creep behaviour

simulation using DEM, described in §3.10 and based on the proposed procedure by Feng et al. [2003].

The advantage of this scheme is to obtain the response of a structural system with delayed behaviour

over time, without the constraint of the critical time step used in the former examples. The maximum

time step is usually very small and makes long term analysis to be very time consuming. The real

time is discretized into predefined time steps, creep time steps, and for each step an adaptive dynamic

relaxation procedure (described earlier) converges to the solution (using the critical time step or density

scaling).

4.6.2 Burger model

The following example show the implementation for the numerical incremental scheme for fast creep

behaviour based on the Burger’s model applied to two particles in tension (Figure 4.49). The time was

discretized into five creep time steps with the duration of 1 second (∆T ). The analysis was divided into

two parts. The first introduced a large time step increment and an unbalanced force (Figure 4.49, after

DT). Secondly, at each creep time step an adaptive dynamic relaxation (DR) is carried out in order to

obtain a new equilibrium due to the introduced incremental forces (Figure 4.49, after DR). The results

show that the equivalent DEM solution, using the incremental scheme, follows the analytical solution for

each time step.
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Figure 4.49 – Results for 2×1 particles in pure tension incremental scheme for fast creep
solution
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4.6.3 Solidification theory

The same type of result can be obtained for the aging model based on the solidification theory. Two

examples are presented showing the normal and bending response of the structural systems (Fig-

ures 4.50 and 4.51).
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Figure 4.50 – Results for 2×1 particles in pure tension with no damping and real masses for
applied force - comparison with equivalent solution
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Figure 4.51 – Results for 20×5 particles in pure tension with no damping and real masses
for applied force - comparison with equivalent solution

Table 4.18 shows the performance comparison between the two proposed methods for the time-dependent

behaviour, the original DEM with ADR (small time steps) and the numerical incremental scheme for fast

creep behaviour (large creep time steps). Considering the presented examples, the number of steps

and the total calculation time decreases significantly using the fast creep model.
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Table 4.18 – Comparison of performance results of the adaptive dynamic relaxation method
(ADR) and of the numerical incremental scheme for fast creep model applied to the

solidification theory

2x1 25x5

ADR Fast simulation ADR Fast simulation

Total loading time (days) 1000 1000 1000 1000

Time step ADR (days) 0.0216 0.0216 0.0084 0.0084

Total steps 46268 156 118969 13087

Total calculation time (min.) 15.9 ≈ 0.0 42.5 2.3
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5| Conclusions

The report presents a particle based discrete element method code implementation in C++ and consti-

tutes a part of the Ph. D. thesis of the grant holder Carlos Serra, entitled "Experimental characterization

and numerical modelling of dam concrete rheological properties", proposed in 2013 [Serra et al., 2013].

Firstly, a state of the art was presented, where several types of discrete models were briefly described,

with special focus in the particle based models developed by Cundall. The third chapter details the

concepts and numerical procedures implemented in the code, where the types of damping, the require-

ments for the solution stability and the density scaling approach were discussed. The testing examples

were presented in the chapter four, in which standard testing examples were used to validate the code

implementation for the different analysis options. The delayed behaviour was considered using a non-

aging viscoelastic model, the Burger model, and an aging viscoelastic model based on the solidification

theory. The code was also adapted in order to implement a numerical scheme for fast creep behaviour

using both constitutive models applied to rigid particle models.

The literature review focused on the developments of discrete models, since its beginning in the early

70s by Cundall until more recent works, including the improvements to rigid particle models and the

development of lattice models for the study of concrete behaviour.

The discrete element method considers two main procedures until convergence is obtained, the force-

displacement law and the law of motion. The first governs the constitutive model applied to each particle

contact and determines the interaction forces due to their relative displacements. The second law de-

fines the kinematic of each element, defined by the motion differential equation. An explicit integration

scheme was used to solve the differential equations and, therefore, procedures for the stability of the so-

lution were studied and implemented. Different types of damping were described, an adaptive dynamic

relaxation and a convergence criterion were also developed to insure a steady-state convergence, equiv-

alent to the static solution.

Three types of time-dependent constitutive models were implemented in the scope of this work: the

Hooke’s model, the Burger’s model and the aging model derived from the solidification theory. The

ultimate objective was to introduce the delayed behaviour of aging materials, such as concrete, although

the previous simpler models were used for the validation of the DEM code.

Since the explicit integration schemes require a small time step in order to obtain convergence, a nu-

merical incremental scheme for fast creep behaviour simulation was developed in order to obtain the

delayed behaviour over large periods of time, as it is usually required in concrete structures analysis.

This numerical algorithm was developed for both Burger’s model and for the aging model based on the

solidification theory and showed a significant increase of computational efficiency when compared with

the original DEM solution.

The validation of the DEM code was based on simple regular models representing tensile (2×1 particles),
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shear (2×2 particles) and bending (20×5 particles) behaviour. Several types of analysis were performed,

considering both real and scaled masses, global and local damping and the adaptive dynamic relaxation

(ADR) and the three types of constitute models. The proposed numerical incremental scheme for fast

creep was also validated for the main examples, considering large creep time steps (∆T).

This work was developed for the doctoral course entitled Elementos finitos em engenharia de estruturas

under Prof. Corneliu Cismasiu’s supervision.
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