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Reliable flood decision-support information systems comprise an extensive network of 
dependable water sensors and a bundle of accurate forecast simulations models. However, the 
quality of gathered data is affected by the pervasive nature of the monitoring network where 
aquatic sensors are vulnerable to external disturbances. Existing solutions for aquatic 
monitoring composed by heterogeneous sensors are unable to ensure continuously reliable 
measurements in complex scenarios. In this paper, we introduce a more general study of fault-
tolerant sensors in the aquatic monitoring process, and we motivate the need of reliable data 
collection in harsh coastal and marine environments. An overview of the main challenges is 
presented, such as the absence of redundancy, and a framework-based solution is presented, 
that automatically adjust the sensors measurements from each disturbance accordingly, 
providing an important increase on the quality and validity of the sensor observations. 
 
INTRODUCTION 
 

During the last decades, private, governmental and non-profitable organizations have been 
developing information systems to monitor, alert and manage environment-related emergencies 
[1]. Platforms, such as flood emergency alert and warning systems [2], comprise an extensive 
network of sensors, a bundle of forecast simulations models, and decision-support modules that 
rely largely on a robust and reliable perception of the conditions of the physical monitoring 
environment. Sensors provide this insight of the real world, where the notion of continuous time 
and continuous values of implicated phenomena meet the computerized notion of discrete 
model of time and discrete estimation of the real data. 

Complex and powerful forecast systems are now able to predict water levels or to track 
storm events with low errors, but they depend on a continuous confirmation with data. Real-
time monitoring data, such as surface water elevation, flow or precipitation depend solely on 
the sensor hardware deployed at the water bodies (oceans, river, lakes, etc…). The goal of this 
paper is to propose a framework to increase the validity of the information provided by these 
sensors. 
 
 



RELATED WORK 
 
A cascade of uncertainties present in each part of the emergency management system affects a 
reliable alert and response [3]. The temporal notion and even quality of sensing data, which is 
used greatly in the forecasting procedures, is affected by the pervasive nature of the 
environment where aquatic sensors are deployed. Thus, information provided by sensors is 
vulnerable to external disturbances affecting its accuracy [4-6]. In water-related emergency 
systems, inaccurate information in aquatic monitoring may not be critical for safety within the 
time frame of other types of monitoring, such as aeronautics, but a possibility of an incorrect 
forecast may incur in issuing false warnings or not issuing real warnings in damaging situations 
(for instance floods or pollution events). 

Existing solutions for aquatic monitoring are composed by a set of heterogeneous sensors 
[7], most of which vulnerable to the unpredictable natural conditions of a harsh environment. It 
is important to realize that due to many plausible reasons water-related sensors are unable to 
always ensure dependable measurements. Dependability of sensor is taken here as a high 
probability of sensors behaving according the requirements.  

The notion of dependability introduced by Laprie [8] declares that it is “the measure in 
which reliance can justifiably be placed on the service delivered by a system”. So, in order to 
understand if a system is dependable one must learn about the potential reasons for imprecise 
actions and what are the means to overcome it. The goal is to establish a way to state the level 
of dependability desired and evaluate if it was achieved.  

Besides the notion of dependability, Laprie studied the impairments to a dependable system 
and categorized them into three facets: fault, error and failure. The latter category is the most 
commonly used to characterize a violation of the expected correct behavior but, although one 
may say that designing a dependable system is all about preventing failures to happen, one must 
understand that a fault is the process that leads to a failure and that the failure is the visible 
external effect of an error. In order to achieve dependability one should sever the chain that 
goes from a fault to a failure. To do so dependable systems use strategies that include fault 
removal, fault forecasting, fault prevention and/or fault treatment schemes. These strategies are 
either for stopping fault events from happening or, despite the occurrence of one or more faults, 
to block their effect (failures), thus making the system fault-tolerant. 

When focusing on dependable monitoring networks, the main approach to fault-tolerant 
sensors is through redundancy, using a set of monitoring data from various sensors, often 
referred as sensor fusion.  

Sensor fusion compares a set of observations from different sensors in the same monitoring 
area. Through processes of comparison, combination and/or smart voting schemes between 
sensors it is possible to conclude what should be the corrected observation and what are the 
faulty sensors [9-11]. When addressing aquatic monitoring and specifically the harsh conditions 
or broad scales, such as in maritime areas, the interested entities and users generally prefer to 
scatter the sensors in pre-identified points in the monitored water body according to expertise 
and local knowledge, to cover the most extensively the complex water dynamics. While 
conceptually correct, this approach makes it difficult to compare sensor observations relating 
ones sensor measurements to another that is placed hundreds of meters apart. Besides the 
distance factor, aquatic monitoring networks are usually comprised of the costly sensors [12], 
not easily feasible to have more than one in a confined area. 

Besides the harsh conditions of aquatic environments, sensors alone have technical 
limitations, specially focusing on replication of data. Firstly, sensor fusion techniques assume 



that a faulty measurement (thus faulty sensor) will be detected as an outlier that exceeds 
conclusively the estimated boundaries of the other sensor’ measurements. The downside is that 
in a transducer (electronic/mechanical component of a sensor) the translation from analogical 
phenomena to the digital world has an intrinsic noise and complex failure mode [13] that 
becomes an obstacle when trying to distinguish between a correct or faulty behavior. Secondly, 
in a multi-sensor approach it is assumed that all measurements are available at the same time 
but heterogeneous sensors networks imply that each sensor has different sampling properties. 
Even if the sampling rate is the same the values may not be accessible in syncronized instants in 
time [9]. 

Considering that redundancy is the path to build and develop dependable sensors, other 
approaches have been applied: 

a) Model-based redundancy: with the help of simulation/mathematical models of the 
aquatic system it is possible to obtain values to validate the measurements. 
Isermann [11] was a big promoter of this type of redundancy where the system 
model calculates the measure variable and then it is compared to the sensor 
measurement. 

b) Signal analysis: it is used to monitor parameters such as signal noise, frequency 
response, velocity of amplitude change among others, and modulates the transducer 
behavior [14]. It is a robust approach in case of strange behavior in a controlled 
system. If a value changes significantly, then a sensor is classified as faulty (or the 
monitored system has changed). 

The main goal of the work herein presented is to address the subject of dependability in 
general and then apply it to sensors. Most of the research introduced was on computer science 
and electronics area where systems are well defined and they handle specific problems. One of 
the goals of this paper is to show how we have to combine and improve all these approaches in 
a general fault-tolerant framework to sensors in real and complex environments such as aquatic 
bodies. 
 
AQUATIC SENSORS FAILURES AND CAUSES 
 
The study of the criticality of the sensor’ observations and its affecting variables begins by 
analyzing the main challenges in architecting a dependable solution to the already operational 
sensors that are currently on-field monitoring. The design of a fault-tolerant framework requires 
an analysis and classification of typical aquatic sensor failures. This step is necessary to 
determine an effective fault detection strategy identifying its causes and the properties of the 
failure types. When designing a sensor the optimal strategy would be to detect and correct the 
fault events at its origins (transducer or software components). But when designing a 
framework to deal with the failures of commercial, hetereogeneous and/or already deployed 
aquatic sensors one has to analyze how sensor faults affect its measurements and what are the 
main external disturbances that cause the fault events. 

 
External factors 
Despite the fact that wireless sensors have ensured a secure position as a solution for a wide 
range of applications, such as the harsh environments of battlefields and disaster relief areas, it 
doesn’t mean that these solutions are still applicable when subjecting the same reliable sensors 
to the unfriendly conditions observed in the water context. Water can have a severe impact on 
the operation of sensors. The effects of water, in particular in areas of highly variable salinity or 



harsh contaminants presence, on sensor devices and on the different characteristics of 
waterproof sensors needs more research [15]. Flood emergency management systems are one of 
many applications of aquatic sensor networks, that necessitates the sensors to either reside 
under the water surface permanently or temporarily, for long periods. 

Sensors may have technological limitations but wireless aquatic sensors have another set of 
additional constraints [16]: power lifetime, power is not often available and batteries have 
limited lifetime; sensor hardware compatibility, mostly due to data loggers and sensor nodes; 
reliability, the harsh weather conditions may cause failures in the measurements and in the 
wireless communication over the monitoring network; and long-range communication, 
measurement locations are commonly sparse over large areas. 

As mentioned above, the design of the fault-tolerant framework for aquatic monitoring 
should start by the study on the influence of external factors related with the involved 
environment on the sensors behavior, more specifically on the sensors measurements and the 
occurrence of faulty measurements. The obvious factors that may have a negative influence in 
the aquatic sensors are the natural environmental events, particularly meteorological events 
such as storms (strong winds, heavy rain and/or big waves). Other not negligible factors are 
marine life (biofouling). In water bodies there are many algae and small organisms that can 
attach easily to a sensor and affect it. For the purpose of demonstration, we used the historical 
data of LNECs aquatic monitoring network [12] and chose two arbitrary instants in time that 
show the sensor working correctly and after the events the sensor showed faulty measurements. 

 
Fig. 1. First detected event of sensor measurement external interference. 

 

 
Fig. 2. Second detected event of sensor measurement external interference. 

 
A first period of interferences in the measurements, a continuous and abnormal reduction 

of salinity values, was identified in October 2012 (see Figure 1), when no significant 
meteorological events intervened. In this case, the cause was the estuarine/coastal life growth 
localized inside the sensor casing. A second period of interferences was identified since January 
19th, 2013 (see Figure 2), when a powerful storm hit heavily almost the entire Portuguese coast, 
a week after sensor maintenance operations were made. 
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We will consider a more profound overview of these types of events in the future, in order 
to perform a correct modeling of the impact of weather events and conditions and aquatic-
related interferences as a cause of faulty measurements. 
 
Failure modes 
 
Table 1. Aquatic sensors failure modes 
 

a) b) c) d) e) 

  
 

 

  

 

 
When a fault event occurs, the faulty measurement is the observable failure. The design of a 
framework that will ensure dependable measurements starts by the fault model of the sensors as 
perceived by those who will use monitoring data. Table 1 illustrates how a fault can affect the 
sensor measurement. In each illustrated failure mode the faulty measurements are compared to 
expect correct behavior, corresponding to the dashed line. Possible failure modes are: 

a) Constant or Offset failure mode: the observations are continuously deviated of the 
expected by a constant offset value Y. The corrected observation would be the 
subtraction of offset Y to the faulty measurement; 

b) Continuous Varying or Drifting failure mode: the observations deviate from the 
expected in a curve movement F(original O, expected E). To correct this type of 
failure mode, redundancy is obligatory; 

c) Non-existing or Jammed failure mode: an external disturbance of accentuated 
gravity may cause the sensor to get jammed in non-related value. Or it can causes 
the sensor to crash and not providing any measurements temporarily or 
indefinitely; 

d) Trimming failure mode: can either trim Up or Low – the observations pattern is 
the same of the expected but due to fault event, the observations can’t reach the 
same minima or maxima than expect correct behavior; 

e) Outliers and Noise failure mode: these faults are either sporadic or high frequent 
in the temporal domain and stochastic in the value domain [17]. 

 
DEPENDABILITY FRAMEWORK 
 
If the first step to dependable measurements is the study and analysis of sensor failures and its 
causes, the second step would be the development of solutions to automatically adjust the 
sensors measurements for each disturbance accordingly, thus contributing to an important 
increase on the quality and validity of the measurements. 

The architecture proposed herein adds one layer in the post-“sensor measurement” state. 
This layer will track the observations and provide a corrected observation and the observation 



validity, through a set of assessments and corrections. These two outputs are complementary to 
the initial input (raw sensor measurement) and increase the value to the monitoring data quality 
(see Figure 3). 

Fig. 3. General overview of dependability framework for aquatic sensors 
 
Depending on the failure modes several processes of validation and correction are 

available. For instance, the faults in the outliers and noise category are easily corrected with 
“blind” (no previous knowledge) signal filtering techniques such as kalman, low-pass and high-
pass filters that improve measurement precision and reduce the noise of the analogic-to-digital 
components. The problem in this procedure, correcting the observations without context 
knowledge on the variables involved, is the already mentioned lack of redundancy. Faulty 
measurements that fall on failure modes b), c) and d) are impossible to detect without 
redundancy. Moreover properties such as if sensor crashed or just didn’t communicate the 
measurements during some temporal interval become unlikely to be confirmed. So, model-
based redundancy has to be considered in order to evaluate properly the validity of the sensor 
observation and to correct it. 

Many studies in the past decade include prediction models involving artificial intelligence 
[18] as a solution for smart fault-tolerant sensors. The main reason is that these methods 
achieve high accuracy rates on predicting the next monitoring value, based solely on past 
observations. Techniques such as neural-networks, support vector machines, genetic algorithms 
and Bayesian networks are among the best. One of the advantages on exploiting these tools in 
the dependability framework is the low time-consuming computational algorithms, ideal when 
addressing sensors with high-frequency sampling rates. The cons is that, in high-variable 
environments, such as oceanic and coastal, the range of the sensor observations may vary to 
scales that past measurements didn’t reach, thus these prediction algorithms wouldn’t be as 
accurate as the numerical model-based solutions. 

Setting back the problem mentioned in the previous section: if there is only one sensor in a 
specific water body, measuring one or more parameters in one region, without other sensors to 
compare observations, how to solve the redundancy problem? Our solution adds the knowledge 
of the dynamic processes involved in the aquatic system. This context information is in the 
form of either i) a validated computational/numerical model that simulates the (hydro)dynamics 
of the water body and provides forecast results for the monitoring points, or ii) a simplistic pre-



determined behavioral model that, instead of forecasts, provides insights on what should be the 
measurements progression (behavior) along time, without predicting actual values (see Figure 
4).  

The application of first type of models to a water body is completely site-dependent, 
(although these simulation models may be used for any region through specific calibration), 
most of the computational algorithms are complex, computer-processing demanding and require 
calibration for the sensor position (for instance the SELFE model [19]). The outcomes are the 
most accurate of all the techniques presented herein since these types of models consider all 
processes that affect the aquatic system. 

The behavioral models are a simple solution when no calibrated hydrodynamic models are 
available for a determined sensor site. The goal is to exploit the typical behaviors of the 
monitored parameters (see Figure 4) and check if the range and variability of the measurements 
are within adequate boundaries, taking into account the specific processes at stake at that site. 
Due to the specific differences on behaviors related to the monitored area, these are also site-
dependent.  
 
Fig. 4. Typical behavior of sensors measuring elevation, salinity and temperature 

 
CONCLUSIONS AND FUTURE WORK CONSIDERATIONS 
 
The paper presents the current status of an on-going research for the development of a 
framework that will support the dependability on aquatic real-time monitoring and forecasting 
systems. It started with the study of the influence of external factors related with coastal and 
marine environment on the sensor network behavior, more specifically on the sensors 
measurements, and it is now progressing to the design of the dependability framework. 
However, much has to be done in studying all aspects of the criticality of the sensor in the 
monitoring process and evaluating individually the techniques and algorithms presented to 
understand its effectiveness in already deployed aquatic sensor networks. Future work will 
include the study of a comparison of the real impact of data fusion provided by the 
dependability framework and the results obtained with sensor fusion, and validate the 
framework using both conventional (water level, salinity, temperature) sensors and recent, 
complex sensor units, based on spectra (e.g. spectophometers used to detect combined sewer 
overflow discharges). 
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