DAMAGE ASSESSMENT AND DIAGNOSIS FORM

SUMMARY OF DAMAGE DIAGNOSIS

Name of the building – Location

Basement of the SW building of Jesus (or Eleven Thousands Virgins) College

Type of damage – decay pattern

- 1. Efflorescences, sanding and crumbling, detachment of the superficial coat of plaster, dark (moisture) spots, red spots (probably of biological origin)
- 2. Efflorescences, dark (moisture) spots
- 3. Efflorescences between the plaster and the paint, blistering and further detachment of the paint
- 4. Efflorescences on the tiles, efflorescences on the mortar joints
- 5. Dark (moisture) spots
- Materials concerned
 - 1. Painted lime plaster
 - 2. Stone
 - 3. Painted cement plaster
 - 4. Ceramic wall tiles
 - 5. Cement-based pavement

Tests performed

- Moisture and hygroscopic moisture content (HMC) profiles of the plaster and of its substrate.
- HMC of adjacent samples of mortar and of stone, directly collected (by hammer and graver) at different depths.
- Ion chromatography on three superficial samples of each one of the two profiles
- XRD characterization of 5 samples of efflorescences
- Water absorption at low pressure (pipe method) on the lime-plaster.

Diagnosis

The HMC test done on adjacent samples of mortar and of stone (fig. 31) indicates a much higher HMC for the mortar samples.

Capillary rise at wall 2 and capillary rise plus an income of moisture from the ground at the back of wall 1 are consistent hypothesis.

Nitrates are the main type of salts responsible for the plasters deterioration. They may come from the soil. On the WC tiles, the efflorescences are carbonates and sulphates. They are probably coming from the bedding cement mortar.

The present lime-render is in a quite good state, especially if we consider its age and the walls high salt and moisture load. The internal high RH (and reduced ventilation) is probably contributing for the plasters low degradation rate because it results in a low evaporation rate at the walls surface.

Advice

For an effective interpretation of the moisture and HMC profiles, we need to know which materials are present in the drilled samples and also which are their relative contents.

Repair of this basement damaged plasters could be done with a lime-mortar, as similar as possible to the existing one, namely in its high capillary absorption (shown by the water absorption tests). A paint that does not constitute a barrier to the incoming salt solutions (i.e. providing a good hydric continuity with the plaster, as well as with high capillary absorption and high water vapour permeability) should be used.

Attention must be paid to the fact that a sudden increase of the building internal ventilation may result in a relevant increase of the plasters degradation rate.

DAMAGE ASSESSMENT AND DIAGNOSIS FORM

Date of inspection +description

- 1. 2002-06-27 preliminary inspection
- 2. 2003-09-11 preliminary inspection
- 3. 2003-09-28 inspection (with TU Delft)
- 4. 2003-12-04 sampling (including powder drilling)
- 5. 2004-01-06 water absorption tests and inspection

Investigator / Institute in charge of the investigation LNEC

Reference number

GENERAL INFORMATION

Name	of	the	building
------	----	-----	----------

Basement of the SW building of the Jesus (or Eleven Thousands Virgins) College (adjacent to Coimbra New Cathedral)

Address

Lg. da Feira, Couraça dos Apóstolos, Lg. Marquês de Pombal, Coimbra

Owner of the	building / Responsible authority of the building
Owner: Factor	y of the New Cathedral
Administration	: Roman Catholic Church
IPPAR is the a	uthority responsible for the monuments conservation since 1992. Between
1960 and 1992	2, the responsible authority was DGEMN.
Construction	phases + data (year)
1547 –	Construction of Jesus College starts
1598 –	Construction of the church (New Cathedral) starts
1640 –	The church nave is opened to the public
1698 –	Construction of the church finished (exact date of finishing of the college
	was not possible to identify at this stage)
1850 / 75 –	In the second half of the XIX century the church and the adjacent
	buildings suffer important (not possible to document at this stage)
	rehabilitation interventions.
1910 —	The church is classified as national monument
around 1940 -	Demolition of buildings adjacent, namely, to the W façade of the College
	SW building. The ground level next to this W façade was then lowered for
	building a new street (the basement of the College SW building cessed to
	be embedded at this side).
Relevant hist	orical calamities

Function(s) o	f the building during time
until 1759 –	Cult (church) and educational (college).
1759 / 72 –	The building (college and church) was unoccupied (in the sequence of the
	Jesuits expulsion from Portugal)
1772 –	The church (including the college SW building, which the basement is our
	case-study) became the headquarters of Coimbra diocese.
1772 / 75 –	The rest of the college became part of Coimbra University (including the
	Public Hospital and the Natural History Museum)
Present funct	tion (Use of installations)
1772 to preser	nt – Cult (church), headquarters of the Coimbra diocese (College
	SW building), educational (rest of the College buildings).
	The SW building basement, which is our present case-study, is
	presently occupied with several activities under the
	responsibility of Coimbra diocese (catechism, scouts, etc.).

Fig. 1 – Jesus College and New Cathedral: aerial view

STATE OF PRESERVATION OF THE BUILDING

			COI	ndition a	ssessm	ent	
	type of damage	excellent	good	reasonable	not adequate	poor	very poor
Roof							
Facades				Condition	not clear		
Structural elements			Х				
Interior (walls)						Х	
Floor			Х				
Ceiling				Х			

Restorations or maintenance interventions performed in the past (as far as considered relevant)

Type of restorations or maintenance

There is no information on relevant restoration or maintenance interventions.

Building part

Date

Company performing the restorations

Reason for restorations

Further information

The cloister garden and the ventilation wells were covered around 1960 (verbal information of the responsible priest to IPPAR). They are now interior spaces. There was no adaptation of building ventilation and of the pluvial water drainage to these new circumstances.

We estimate the present lime plaster to be around 40 years old.

DAMAGE

Type of damage and architectural element affected Painted lime plaster

- 1. Efflorescences
- 2. Sanding and crumbling of the plaster/paint system
- 3. Detachment of the superficial coat of plaster
- 4. Dark (moisture) spots
- 5. Red spots (probably of biological origin)

<u>Stone</u>

- 6. Efflorescences
- 7. Dark (moisture) spots
- Painted cement plaster
 - 8. Efflorescences between the plaster and the paint
 - 9. Blistering and further detachment of the paint
- Ceramic tiles covering

Efflorescences on the tiles

Ceramic tiles covering

11. Efflorescences on the mortar joints

- Continuous cement pavement
 - 12. Dark (moisture) spots

Location of damaged area

Damage was evaluated mainly on the corridors and WCs of the basement. Five main types of surfaces were found to be damaged:

- A Walls of irregular stone masonry and lime mortar, lime-plastered and painted
- B Wall of regular stone masonry
- C Walls (at the entrance stairs) with ceramic tiles until around 1,5 m from the pavement and a lime plaster/paint system above them (a cement plaster repair of 5 cm width exists between the ceramic tiles and the lime-plastered surface)
- D Walls (WCs) covered with ceramic tiles and a lime plaster/paint system above them
- E Continuous pavement of cementitious material

The five types of surfaces have the following location on the building:

Distribution of the damage was the following:

- 1. Zones A and C: Spread all over the walls
- 2. Zones A and C: In general, at the base of the walls (70% up to 15 cm; 30% up to 60 cm); in localized zones, higher damaged spots exist
- 3. Zones A and C: In general, at the base of the walls
- 4. Zones A and C: Spread all over the walls
- 5. Zones A and C: Spread all over the walls
- 6. Zone B: Spread all over the wall
- 7. Zone B: Spread all over the wall but more intense at its base
- 8. Zone D: Usually concentrated at the base of the plastered surface (on the top of the tilled surface)
- 9. Zone D: Usually concentrated at the base of the plastered surface (on the top of the tilled surface)
- 10. Zone D: Spread
- 11. Zone C: Spread
- 12. Zone E: Spots are mainly concentrated close to the base of the walls, but other localized spots also exist on the pavement current surface

Extent of damaged area (%) and depth (mm)

- 1. Zone A: 20% of the plastered surface. Zone C: 50% of the plastered surface
- 2. Zone A: 10% of the plastered surface (deepness: up to 2.5 cm on the current surface of the walls and up to 5 cm on the walls corners). Zone C: 15% of the plastered surface (deepness: superficial)
- 3. Zone A: Localized. Zone C: Irrelevant
- 4. Zone A: 25% of the plastered surface. Zone C: Irrelevant
- 5. Zone A: 10% of the plastered surface. Zone C: 1% of the plastered surface
- 6. 50% of the stone surface
- 7. 30% of the stone surface
- 8. Localized
- 9. Localized
- 10. 50% of the tilled surface
- 11. Generalized
- 12. 5% of the pavement surface

The values for the efflorescences had to be estimated because the walls are periodically cleaned.

Evolution of the damage

The efflorescences and moisture spots were visible in all the inspections: June 2002, September and December 2003 and January 2004.

Type of damage and material(s) concerned wall as a whole

masonry elements (stone) Efflorescences, dark (moisture) spots

mortar

(re)-pointing

rendering/plaster
Painted lime plaster
Efflorescences, sanding and crumbling of the plaster/paint system, detachment of
superficial coat of plaster, dark (moisture) spots, red spots (probably of biological origin)
Painted cement plaster
Efflorescences between the plaster and the paint, blistering and further detachment of
the paint
Other coverings
Ceramic tiles
Efflorescences on the tiles, efflorescences on the mortar joints
Continuous cement pavement
Dark (moisture) spots

ILLUSTRATIONS

Fig. 8 – Entrance stairs (2003-09-11)

Fig. 10 – Efflorescences on ceramic tiles joints at the entrance stairs (2003-09-11)

Fig. 11 - Regular stone masonry wall (2004-01-06)

Fig. 12 – Efflorescences on stone (2004-01-06)

Fig. 13 – Damaged lime plaster/paint system at a corridor (2003-12-04)

Fig. 14 – Damaged lime plaster/paint system at a corridor (2003-09-11)

ENVIRONMENT

Climatological circumstances

Exposition (rain, wind, etc)

The basement of the SW budding of Jesus College is partially embedded: at S it is bellow the ground level; at W it is above the ground level; at N and E, it confines with the other buildings and, due to the scarce drawings available (there are no profiles), we have no information on the ground level in these sides of the building.

Surrounding environment (urban/rural/industrial, coastal/interior) Urban/Interior.

Additional data

Water springs are likely to exist at this zone of Coimbra (information given to IPPAR by local residents). The existence of vestiges of a Roman Forum at this local also points to the presence of water springs.

The interior environment at the basement is extremely humid. At the scouts secretary, an electric air dryer is working in permanence to improve the conditions of habitability and of paper conservation. At this room, the damage on the lime plaster seems stronger, probably due to the higher evaporation rate of the walls moisture. The bottom of the walls was covered with gypsum boards and (probably also in consequence of this) there is strong damage until more than 2 m above the pavement.

Fig. 24 – Scouts secretary: salt damage on plaster (2003-09-11)

A continuous cement-based pavement exists, covering almost all the basement floor area.

DIAGNOSIS

Hypo Dama	t hesis, -(ge is due	e s) to mois	sture and	l salts.						
Tests Mc we for HM at o "ca lon pro XR	perform isture an re meas estimatin IC of adj different ught" by chroma files D charao	ed ad hygro ured (by ng moist acent sa depths, powder tograph cterizatio	scopic n the weiture and amples c for helpi drilling y was p on of 5 s	noisture ight met total sal of mortar ng to int erforme amples	content (F hod) at tw t content of and of st erpret the d on three of efflores	HMC) profile to walls (sa distribution one, directly HMC profi e superficia cences was	es of the pla imples colle y collected les, on whic al samples s done	aster and ected by p (by hamm ch differen of each o	of its sub bowder c ner and g nt materia bne of th	ostrate Irilling) graver) als are ne two
 Ware 	ater abso noving th	orption le super	at low ficial pai	oressure nt) for cl	e (pipe m naracteriza	ethod) wa ation purpo	s done on ses.	the lime	e-plaster	(after
Resul	ts of the	tests	able 5 –	Powder c	Irilling: type	of materials	s found at wa	III 1		
				-	Dee	epness (cm)	-		-	
	Heigth (m)	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35	
	2.6	LM	LM + S	LM + S	S?(+LM?)	S (+LM?) + B	LM + S + B	LM ?	LM + S	
	1.8	LM	LM + S	S (+LM?)	<mark>S (+LM?)</mark>	S	LM + S	<mark>S ?</mark>	S	
	1.0	LM	LM + S	LM + S	LM + S	<mark>LM</mark>	LM	LM	LM ?	
	0.3	LM	<mark>S + LM</mark>	S	S	S	S	LM or S ?	<mark>S ?</mark>	
	0.15	LM	LM	DLM	DLM	DLM	LM	B + LM	В	j
				monar, Di	_ivi — Qark IIn	ne-monar, 5 -	Sione, D – Dri	UK		

talline ounds O ₃) talline ounds O ₃) toH ₂ O) O ₃) ₂ .2H2O) O ₄) ₂) caCO ₃)	0,12 0,31 0,24 0,33 0,37 0,31 ealitatively lassification w content Table 8 0 n l plas + - - - - - -	0,12 0,34 0,26 0,41 0,52 detected on of the medium 3 - XRD) me- ster + + g	0,35 0,28 0,52 0,49 0,22 0,13 l by titration chlorides, ni content, high characteriza b) On lime- plaster ++/+++ ++	0,26 0,21 0,24 0,18 0,26 0,32 * - Present trates and su content ation of efflo Efflorescenc c) On lime- plaster +++ - -	0,15 0,14 0,13 0,22 0,12 0,21 Nd - non- lphates co rescence es On pla ++,	0,25 0,60 0,44 0,42 0,47 0,43 -detected pontent, a -detected pontent, a -sser /+++ -	Nd 0,02 0,06 0,25 0,42 ccording to response to re	* * * * * * * * *
talline ounds O ₃) 0.15 1.20 0.50 0.20 es were qu cate the cl 6-99/D: lov talline ounds O ₃) 10H ₂ O) O ₃) ₂ .2H2O) O ₄) ₂) caCO ₃)	Table 8	0,34 0,26 0,41 0,42 0,52 detected on of the medium 3 - XRD	b) On lime- plaster ++/+++ -	0,21 0,24 0,18 0,26 0,32 * - Present trates and su content ation of efflo Efflorescence c) On lime- plaster +++ - - -	0,14 0,13 0,12 0,22 0,12 0,21 Nd - non-lphates completes completes 0 rescence 0 es 0 ++, 0	0,60 0,44 0,42 0,47 0,43 -detected pontent, a -detected pontent, a -ss - 	e) On WC tile	* * * * the W
talline ounds O ₃) 20 20 20 20 20 20 20 20 20 20 20 20 20	Table 8))))))))))))))	b) On lime- plaster ++/+++ -	ation of efflo Efflorescence C) C) C) C) C) C) C) C) C) C)	0,13 0,22 0,12 0,21 Nd - non lphates co rescence es On pla ++,	0,44 0,42 0,47 0,43 -detected pontent, a es d) lime- aster /+++ -	e) On WC tile	* * * * the W
1.20 0.50 0.20 es were qu cate the cl .6-99/D: lov talline ounds O ₃) 10H ₂ O) O ₃)2.2H2O) O ₄)2) caCO ₃)	0,33 0,37 0,31 alitatively assification w content Table 8 0n I plas 4 0r 1 plas	0,41 0,42 0,52 detected on of the medium 3 – XRD) ime- ster + - g	0,49 0,22 0,13 I by titration chlorides, ni content, high characteriza b) On lime- plaster ++/+++ ++	0,18 0,26 0,32 * - Present trates and su content ation of efflo Efflorescenc C) On lime- plaster +++	0,22 0,12 0,21 Nd - non- lphates co rescence es On pla ++,	0,42 0,47 0,43 -detected pontent, a sster /+++ -	e) On WC tile	* * * the W
0.50 0.20 es were qu cate the cl 6-99/D: lov talline ounds O ₃) 10H ₂ O) O ₃) ₂ .2H2O) O ₄) ₂) caCO ₃)	0,37 0,31 alitatively assification w content Table 8 0n 1 plas + - - - - -	0,42 0,52 detected on of the medium 3 – XRD) ime- ster + - g	0,22 0,13 l by titration chlorides, ni content, high characteriza b) On lime- plaster ++/+++ ++	0,26 0,32 * - Present trates and su content ation of efflo Efflorescenc c) On lime- plaster +++ -	0,12 0,21 Nd - non lphates co rescence es On pla ++,	0,47 0,43 -detected pontent, a es d) lime- aster /+++ -	e) On WC tile	* the W
0.20 es were qu cate the cl -6-99/D: lov talline ounds O ₃) 10H ₂ O) O ₃) ₂ .2H2O) O ₄) ₂) caCO ₃)	0,31 alitatively lassification w content Table 8 On 1 plas + - - - -	0,52 detected on of the medium 3 – XRD) ime- ster + - g	0,13 l by titration chlorides, ni content, high characteriza b) On lime- plaster ++/+++ ++ -	0,32 * - Present trates and su content ation of efflo Efflorescence c) On lime- plaster +++	Nd - non- lphates co rescence res On pla ++,	0,43 -detected ontent, a -ss - - - +	e) On WC tile	* the W
es were qu cate the cl -6-99/D: lov talline ounds O_3) $10H_2O$) O_3) ₂ .2H2O) O_3) ₂ .2H2O) O_4) ₂) caCO ₃)	Table 8	detected on of the medium 3 – XRD) ime- ster + - g	l by titration chlorides, ni content, high characteriza b) On lime- plaster ++/+++ ++ -	* - Present trates and su content ation of efflo Efflorescenc C) On lime- plaster +++ - -	Nd - non- lphates co rescence es On pla ++,	d) d) 	e) On WC tile	the W
talline ounds O_3) $10H_2O$) O_3) ₂ .2H2O) O_3) ₂ .2H2O) O_4) ₂) caCO ₃)	a On I plas + -) ime- ster + g	b) On lime- plaster ++/+++ ++ - -	Efflorescenc c) On lime- plaster +++ - -	ees On pla ++,	d) lime- aster /+++ -	e) On WC tile vtg -	es e
talline ounds O_3) $10H_2O$) O_3) ₂ .2H2O) O_4) ₂) caCO ₃)	a On I plas + - - -) ime- ster + - - - - - - -	b) On lime- plaster ++/+++ ++ - -	c) On lime- plaster +++ - -	On pla ++,	d) lime- aster /+++ -	e) On WC tile vtg -	es
O_{3} O_{3} $O_{2}O_{2}O_{3}$ $O_{3}O_{2}O_{2}O_{2}O_{2}O_{3}O_{2}O_{3}O_{2}O_{3}O_{2}O_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	On I plas + 	g	On lime- plaster ++/+++ ++ - -	On lime- plaster +++ - -	On pla ++,	lime- aster /+++ -	On WC tile vtg -	es
O ₃) 10H ₂ O) O ₃) ₂ .2H2O) O ₄) ₂) caCO ₃)		g	plaster 		pia 	+++	vtg -	_
$\frac{10H_2O}{10H_2O}$ $\frac{10H_2O}{0_3)_2.2H2O}$ $\frac{0_4)_2}{2aCO_3}$		g	++ ++ - -	-		- +	-	
10H ₂ O) D ₃) ₂ .2H2O) D ₄) ₂) CaCO ₃)		g	-	-		+		
0 ₃₎₂ .2H2O) 0 ₄₎₂₎ CaCO ₃)		g	-	-		+		
0 ₄₎₂) CaCO ₃)	-		-	-			+++	
caCO ₃)						+	++	
·		-	+	vtg		-	-	
	-		-	-	V	/tg	-	
14 12 10 10 8 6 4 2 0 0	0.1	0.2 T (s	0.3 sqrt(h))	0.4 0.4	→ i → i → i	i) plaster i) plaster i) plaste	1.0 m 1.5 m r 1.5 m	
done on	adjace	nt sam	ples of mo	ortar and o	f stone	(fig. 31) indicate	s a i
	6 4 2 0 Fig.:	6 4 2 0 0 0 0 0.1 Fig.32 – Wat done on adjace he mortar samp g. 25 and 28) ar	6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0	6 4 2 0 0 0.1 0.2 0.3 T (sqrt(h)) Fig.32 – Water absorption under done on adjacent samples of mo- the mortar samples. g. 25 and 28) and the HMC (fig. 2	6 4 2 0 0 0.1 0.2 0.3 0.4 0.3 T (sqrt(h)) Fig.32 – Water absorption under low pressur done on adjacent samples of mortar and of the mortar samples. g. 25 and 28) and the HMC (fig. 27 and 30) p	6 4 2 0 0 0.1 0.2 0.3 0.4 0.5 T (sqrt(h)) Fig.32 – Water absorption under low pressure (pipe not samples of mortar and of stone the mortar samples. g. 25 and 28) and the HMC (fig. 27 and 30) profiles samples of the	<pre>6 6 6 6 7 9 0 0 0.1 0.2 0.3 0.4 0.5 7 (sqrt(h)) Fig.32 – Water absorption under low pressure (pipe method) done on adjacent samples of mortar and of stone (fig. 31 the mortar samples. g. 25 and 28) and the HMC (fig. 27 and 30) profiles show difference of the the the the the the the the the the</pre>	<pre>6</pre>

The moisture (fig. 25 and 28) and the HMC (fig. 27 and 30) profiles show discontinuities, which should therefore be due, at least partially, to the variable nature of the samples collected by powder drilling (tables 5 and 6). Evaluation of the materials of these samples was done by combining the visual observation of the powder with an "in situ" qualitative evaluation of the materials resistance to the drilling. However, this procedure does not often permit to have an effective determination of the sampled materials nature and contents, due to the following main factors:

- The drilling equipment is not a specific apparatus for measuring the drilling resistance. This evaluation is simply based on the operator sensitivity, which is not enough for detecting all the differences, mainly at the higher depths.
- Visual observation is not also usually enough for distinguishing between materials with close colours (some stones, lime mortar, etc.).
- Some stones have relevant colour variability; sometimes, several types of stone are used in the same masonry.
- It is common to get variable contents of different materials in the same sample (ex: stone + lime mortar + brick).

Having this considerations in mind, the moisture and HMC tests indicate that:

- From 0-2 cm and, in the case of wall 2, also from 2-5 cm always the same material (lime mortar) was colleted. These lines (red and pink) point for capillary rise as the origin of moisture.
- A general increase of moisture content seems to exist towards the interior of both walls.
- At wall 1 (peripheric wall, probably semi-embeded), significant moisture contents are also present deep inside at the to of the wall, while at wall 2 (interior wall) this does not occur.

Capillary rise at wall 2 and capillary rise plus an income of moisture from the ground at the back of wall 1 are consistent hypothesis.

Nitrates are the main type of salts responsible for the plasters deterioration, as indicated by the ion chromatography analyses of plaster samples and by the XRD of efflorescences. The nitrates may come from the soil.

On the WC tiles, the efflorescences are carbonates and sulphates. They are probably coming from the bedding cement mortar.

The present lime-render is in a quite good state, especially if we consider its age and the walls high salt and moisture load. The internal high RH (and reduced ventilation) is probably contributing for the plasters low degradation rate because it results in a low evaporation rate at the walls surface.

ADVICE

The main conclusion of this case-study analisys is, at the moment, is that, for an effective interpretation of the moisture and HMC profiles, we need to know which materials are present in the drilled samples and also which are their relative contents.

Repair of this basement damaged plasters could be done with a lime-mortar, as similar as possible to the existing one, namely in its high capillary absorption (shown by the water absorption tests). A paint that does not constitute a barrier to the incoming salt solutions (i.e. providing a good hydric continuity with the plaster, as well as with high capillary absorption and high water vapour permeability) should be used.

Attention must be paid to the fact that a sudden increase of the building internal ventilation may result in a relevant increase of the plasters degradation rate. For this reason, it is advisable to first proceed to the elimination of the moisture source. Then, monitoring of the walls moisture content (by periodic sampling) should be done. The internal ventilation should only be increased after the walls have dried.