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ABSTRACT 
 
The vortex-induced vibration (VIV) phenomenon has drawn the attention of 
researchers in Engineering for several decades. An example is the riser used 
for petroleum exploration, in which it is subjected to marine flows that may 
cause oscillations due to vortex shedding. In this paper, numerical analyses 
of the phenomena that occur in the interaction among flows at low Reynolds 
numbers and elastically mounted cylinders are presented. The simulation is 
carried out by using the numerical model Ifeinco that uses a semi-implicit 
two-step Taylor-Galerkin method to discretize the Navier-Stokes equations 
and the arbitrary Lagrangean-Eulerian formulation to follow the cylinder 
motion. The rigid body motion description is calculated by using the 
Newmark method. Firstly, the characteristics of the vortex generation 
process for the fixed cylinder are analyzed. In this case, the Strouhal 
number, the mean drag and the RMS lift coefficients for Reynolds numbers 
ranging from 90 to 140 are shown. Afterwards, an analysis of a flexible 
supported cylinder (with a spring and a damper) in transverse direction 
subject to flows with Reynolds numbers ranging from 90 to 140 is carried 
out. The cylinder displacement and the vibration frequencies are studied; 
the synchronization between the vortex shedding and the vibration 
frequency (lock-in) is analyzed. Similar results to the experimental ones 
developed by Anagnostopoulos and Bearman (1992) were obtained in this 
study. 
 

Keywords: finite element method, oscillating cylinder, fluid-structure 
interaction. 

 
NOMENCLATURE 
 
c Damping coefficient, kg/s 
CD Drag coefficient 
CL Lift coefficient 
D Diameter, m 
F     Force, N 
f Frequency, Hz 
FD Drag force, N 
FL Lift force, N 
fn Natural frequency, Hz 
g Gravity acceleration, m/s² 
m mass, kg 
p Pressure, Pa 
Re Reynolds number 
St Strouhal number 
U Momentum per volume, kg m/s /m3 
U∞ Free stream velocity, m/s 
v Fluid velocity, m/s 
w Mesh velocity, m/s 
Y Amplitude of cylinder oscillation, m 
y     Cylinder displacement, m 
y&     Cylinder Velocity, m/s 
y&&     Cylinder acceleration, m/s2 

 
Greek symbols 
 
τ Viscous stress tensor, Pa 
ρ Specific mass, kg/m³ 

k Spring stiffness, N/m 
μ Viscosity, kg/(ms) 
 
INTRODUCTION 
 
 Vortex-induced vibration (VIV) is a 
phenomenon that is found in several engineering 
fields. Some examples are the following: wind can 
cause oscillations on bridges, slender buildings, 
chimneys and energy transmission cables; flows with 
high velocities can induce orbital movements in 
internal tubes of a heat exchanger; and currents and 
waves can cause vibration on pipelines.  
 The wake around a circular cylinder due to a 
uniform flow leads to variety of complex phenomena. 
Despite the simplicity of geometry, the flow around a 
cylinder is very complicated and of particular 
importance, since it may induce unsteady forces on 
structures associated with vortex shedding. 
Therefore, this case has been studied for several 
decades, and, nowadays, the behavior of the flow is 
known. For Reynolds number (Re) up to 49, two 
symmetric stationary recirculation zones attached to 
the rear part of the cylinder wall are observed. From 
49 to 190, the wake is still laminar and two-
dimensional and it is composed by two periodic 
staggered rows of alternating vortices (von Kármán 
vortex shedding). For higher Reynolds numbers 
(from 190 to 260), the wake becomes three-
dimensional and progressively turbulent. This regime 
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is followed by a shear layer transition (up to 1200), in 
which separating shear layers become unstable, and, 
finally, by the boundary layer transition (around 105) 
associated with fast decrease of the drag coefficient. 
For these regimes, the flow exhibits a periodicity 
which is known as Strouhal frequency. When a 
periodic vortex street is well established, this 
frequency corresponds to that of the vortex shedding 
frequency; in other cases, in which the von Kármán 
streets are not clearly visible, the frequency can be 
defined as the one of the fluctuations of the 
streamwise velocity component, for example 
(Placzek et al., 2009).  
 In many applications, the cylinder oscillates and 
interacts with the vortex shedding process. For forced 
oscillations in a range of frequency and amplitude, 
the cylinder motion is able to control the instability 
mechanism generated by vortex shedding. One of the 
most interesting characteristics of this fluid-structure 
interaction is the synchronization (lock-in) between 
the vortex shedding and the vibration frequency. 
Similar phenomena are observed for VIV, in which 
the flow causes the oscillation of the cylinder at its 
natural frequency. This frequency depends on the 
mass, the rigidity and the damping of the cylinder. In 
this phenomenon, which occurs in a range of flow 
velocity, the amplitude reaches a maximum value.  
 This complex fluid-structure interaction 
phenomenon is still a good test case to validate the 
numerical models. Several numerical analyses can be 
found in the literature for a large range of Reynolds 
numbers, including Reynolds Averaged Navier-
Stokes (RANS) methods (Saghafian et al., 2003; 
Guilmineau and Queutey, 2004), Large Eddy 
Simulations (LES) (Breuer, 2000; Pasquetti, 2005; 
Al-Jamal and Dalton, 2004), Direct Numerical 
Simulations (DNS) and methods that use finite 
volume or finite element approximations to solve the 
Navier-Stokes equations (Anagnostopoulos and 
Bearman, 1992; Nobari and Naredan, 2006; Mittal 
and Kumar, 2001).  
 This paper describes simulations which are 
carried out by using the numerical model Ifeinco 
(Teixeira and Awruch, 2005) that uses a semi-
implicit two-step Taylor-Galerkin method to 
discretize the Navier-Stokes equations and the 
arbitrary Lagrangean-Eulerian formulation to follow 
the cylinder motion. The rigid body motion 
description is calculated by using the Newmark 
method. Firstly, the characteristics of the vortex 
generation process for the fixed cylinder are 
analyzed. In this case, the Strouhal number, the mean 
drag and the RMS lift coefficients for Reynolds 
numbers ranging from 90 to 140 are shown and 
compared with experimental and numerical results of 
the literature. Afterwards, an analysis of a flexible 
supported cylinder (with a spring and a damper) in 
transverse direction subject to flows with Reynolds 
numbers ranging from 90 to 140 is carried out. The 
cylinder displacement and the vibration frequencies 

are studied and the synchronization between the 
vortex shedding and the vibration frequency (lock-in) 
is analyzed. Numerical results are similar to 
experimental ones obtained by Anagnostopoulos and 
Bearman (1992). 
 
NUMERICAL MODEL 
 
 The numerical model Ifeinco is based on a 
partitioned scheme, in which the fluid flow and the 
structure are solved in two-way interaction. Basically, 
the fluid-structure interaction adopted by the code 
consists in the following steps: (a) update the 
variables of the flow from instant t to t+∆t; (b) 
impose pressure and viscous stress as a load to the 
structure; (c) update the variables of the structure 
from instant t to t+∆t; (d) impose the body motion to 
the flow in terms of the updated velocity vector and 
boundary position.  
 Basically, updating the variables of the flow 
consists of following steps (Teixeira and Awruch, 
2005): 

a) Calculate non-corrected velocity U i
~ at t+∆t/2, 

where the pressure term is at t instant, according to 
the equation: 
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where ρ is the specific mass, p is the pressure, gi are 
the gravity acceleration components, vi are the 
velocity components,  wi are the velocity components 
of the reference system and τij is the viscous stress 
tensor viiU ρ= , ( ) Uf ijijij vvv == ρ  (i, j = 1, 2). 
b) Update the pressure p at t+∆t, given by the Poisson 
equation: 
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where ppp nn −=Δ +1 and i = 1, 2. 
c) Correct the velocity at t+∆t/2, adding the pressure 
variation term from t to t+∆t/2, according to the 
equation: 
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d) Calculate the velocity at t+∆t using variables 
updated in the previous steps as follows: 
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The classical Galerkin weighted residual method is 
applied to the space discretization of Eq. (1), (2), (3) 
and (4), and a triangular element is employed. In the 
variables at t+∆t/2 instant, a constant shape function 
is used, and in the variables at t and t+∆t, a linear 
shape function is employed (Teixeira and Awruch, 
2001). The mesh velocity vertical component w2 is 
computed to diminish element distortions, keeping 
prescribed velocities on moving and stationary 
boundary surfaces. The mesh movement algorithm 
adopted in this paper uses a smoothing procedure for 
the velocities based on these boundary lines. The 
updating of the mesh velocity at node i of the finite 
element domain is based on the mesh velocity of the 
nodes j that belong to the boundary lines. 

In order to update the rigid-body motion 
structure, it is necessary to calculate displacements 
and rotations of a hypothetical concentrated mass at 
its gravity center. In this study case, there is only 
movement in transverse direction (one degree of 
freedom - DOF) and, consequently, displacement, 
velocity and acceleration in this direction are the 
variables to be determined at each time step. To 
update the variables of the structure, the rigid motion 
of the cylinder is calculated at each instant, after the 
variables of the flow (pressure and viscous stress) are 
known. For this study case, one DOF dynamic 
equation is considered for the transverse direction, as 
follows: 
 

Fkyycym =++ &&&               (5) 

 
where y&& , y&  and y are the transverse acceleration, 
velocity and displacement, respectively; m is the 
mass; c is the damping coefficient; k is the stiffness; 
and F is the dynamic force. In this code, Eq. (5) is 
discretized in time by using the implicit Newmark 
method (Bathe, 1996) and the acceleration, the 
velocity and the displacement in transverse direction 
are calculated at each time step. 
 
NUMERICAL SIMULATIONS 
 

The case study consists of a cylinder (diameter 
and mass equal to 0.0016m and 0.2979kg, 
respectively) subject to a uniform water flow 
(specific mass, ρ, and viscosity, μ, equal to 
1000.0kg/m3 and 0.001kg/(ms), respectively). The 
cylinder is mounted on a spring and a damper in 
transverse direction and fixed towards the flow. The 
spring stiffness, k, is equal to 579N/m and the 
damping coefficient, c, is equal to 0.0325kg/s. The 
natural frequency of this system is fn=7.016Hz 
(Anagnostopoulos and Bearman, 1992). 

The influence of the size of the computational 
domain was analyzed for Reynolds number equal to 
135. The best computational domain that satisfied 
both accuracy and computational cost criteria was a 
rectangle 0.320m wide and 0.384m long, as shown in 
Fig. 1. The cylinder center is located at the center of 

the domain in transverse direction to the flow and 
0.160m from its left side in longitudinal direction. In 
this computational domain, the smallest distance 
from the boundary to the cylinder center is equal to 
100D. After analyzing the mesh convergence, a finite 
element unstructured mesh composed by triangles 
with 200 elements around the cylinder was used. 
Element sizes increase gradually towards the 
boundaries of the domain. The mesh has 298143 
nodes and 595526 elements. A constant velocity is 
imposed on the left side of the computational domain; 
on the lateral boundaries, a slide condition is 
imposed; and the right side is free exit, but null 
pressure is imposed on its middle. The time step used 
for the simulations is equal to 5.0 x 10-5 s. 
 

 
 

Figure 1. Numerical domain. 
 

First, the behavior of the flow considering the 
fixed cylinder is analyzed. Specifically, the flow 
characteristics at Re=105 (velocity U∞ equal to 
0.065625m/s) are studied. Figure 2 shows the 
velocity vectors and streamlines at eight instants 
along one period of vortex formation, respectively. 
The vortex formation was clearly observed, showing 
two different regions behind the cylinder where the 
flow separation occurs. Near the cylinder surface, 
while the larger vortex is in one direction, the 
opposing vortex is in another one. 

Drag (FD) and lift (FL) forces on the cylinder 
obtained by numerical simulation for Re=105 are 
shown in Fig. 3. The drag force has a periodic 
behavior with a little variation around 0.0045N, 
whereas the lift force has a periodic behavior with 
amplitude equal to 0.0012N and frequency equal to 
6.828Hz. 

Figure 4 shows a comparison among the 
Strouhal numbers, St=f D/U∞, obtained by numerical 
results (where f is equal to the lift force frequency) 
for Re from 90 to 140 and experimental results of 
Willianson (Willianson, 1989). Numerical results are 
in very good agreement with experimental ones; the 
mean difference was only 0.03%. 

In Fig. 5, a comparison of the mean drag 
coefficient (CD) with numerical ones obtained by 
Poldsziech and Grundmann (2007) for the same 
range of the Re is shown. The authors used a Spectral 
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Element Method and presented two curves with sizes 
of the computational domain of 70D and 4000D. It 
may be noticed that the curve of this study is located 
between both Poldsziech and Grundmann’s curves 
and the mean differences related to the curves are 
only 0.8% (4000D) and 0.4% (70D). 

The root mean square (RMS) lift coefficient 
(CL) is shown in Fig. 6 and it is compared with 
numerical one obtained by Baranyi and Lewis (2006), 
who used a Grid Based Method and a size of the 
computational domain of 40D. In this case, the mean 
difference between both numerical results is only 
0.2%. 

It is worth mentioning that the high accuracy of 
the parameters St and CL shows the capacity of the 
numerical model Ifeinco to reproduce the frequency 
and the magnitude of forces that is imposed over the 
circular cylinder in the fluid-structure interaction 
process. 
 

 

 

 

 
 

Figure 2. Velocity vectors at eight instants along a 
period of vortex formation. 

 

 
Figure 3. Drag (a) and lift (b) forces for fixed 

cylinder with Re=105. 
 

 
Figure 4. Strouhal numbers versus Reynolds 

numbers. 
 

 

Figure 5. Mean drag coefficient (CD) versus Reynolds 
numbers. 

t = 2.9858s t = 3.0032s 

t = 3.0206s t = 3.0380s 

t = 3.0554s t = 3.0728s 

t = 3.0902s t = 3.1076s 

t = 3.1250s 

(a) 

(b) 
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Figure 6. RMS lift coefficient (CL) versus Reynolds 

numbers. 
 

Afterwards, the interaction among a cylinder 
mounted on an elastic fixing in transverse direction 
and flows at Reynolds numbers from 90 to 140 is 
analyzed. 

Figure 7 shows the relation between the 
amplitude (Y) of the cylinder oscillation and its 
diameter (D) in function of Reynolds numbers (90 to 
140). Figure 8 shows the relation between the 
frequency of vibration (obtained by the time series of 
the CL) and the natural frequency (f./fn) in function of 
Reynolds numbers. 

The numerical results show that the lock-in 
phenomenon was captured for Reynolds numbers 
between 102 and 113. This is observed due to the 
increase of the amplitude of cylinder motion and the 
equality of vibration and natural frequencies. Out of 
the lock-in region, the amplitudes of cylinder motion 
are negligible and the vibration frequencies are 
similar to that obtained for a fixed cylinder, described 
by the Willianson’s curve.   

Figures 7 and 8 also show the results obtained 
experimentally by Anagnostopoulos and Bearman 
(1992) and numerically by Dettmer and Perić (2006). 
The latter used a model that employs the stabilized 
low order velocity–pressure finite elements, an 
arbitrary Lagrangian–Eulerian formulation and the 
discrete implicit generalized-α method for the rigid 
body motion. Both numerical results are similar in 
terms of amplitudes and frequencies along the 
Reynolds number range. The numerical amplitude 
values are always smaller than experimental ones and 
there are little differences in the lock-in range. The 
frequencies obtained numerically show the same 
behavior: in the lock-in region, the vibration 
frequency is equal to the natural frequency, while, out 
of the lock-in, the vibration frequency follows the 
Strouhal ones.  The differences among amplitudes 
obtained experimentally and numerically in the 
Reynolds number range in the lock-in region were 
explained by Dettmer and Perić (2006) comparing the 
numerical domain and boundary conditions and the 
real situation of the experience. The experiment was 
carried out in a 0.70m deep channel where 0.12m of 
the cylinder was submerged. The lack of a horizontal 
plate in the end of the submerged cylinder allowed 

the vortex shedding in this region. This fact and the 
influence of the free surface contribute to develop the 
three-dimensional behavior of the flow, unlike the 
numerical conditions. 
 

 

 
Figure 7. Amplitude (Y/D) versus Reynolds numbers. 

 

 
Figure 8. Frequency of vibration (f./fn) versus 

Reynolds numbers. 
 

Figure 9 shows the behavior of the drag and the 
lift forces for oscillating and fixed cylinders with 
Re=105. Unlike the drag force for the fixed cylinder, 
which has a small harmonic variation around 
0.0045N, the force oscillates between 0.0050N and 
0.0073N at a frequency equal to 14.085Hz (almost 
twofold the frequency in transverse direction) for the 
oscillating cylinder. In the transverse direction, the 
lift forces differ in terms of frequency and amplitude. 
The amplitudes for the fixed and the oscillating 
cylinders are 0.0012N and 0.0014N and their 
frequencies are 6.828Hz and 6.984Hz, respectively. 
Both frequencies are related to the vortex shedding 
and the latter is closer to the natural frequency of the 
dynamic system of the cylinder (fn=7.016Hz). 

A representative case out of the lock-in region 
(Re=123) was chosen to show its different force 
behavior. Figure 10 shows the time series of the drag 
and the lift forces for Re=123. The drag forces 
exhibit little variation around 0.0062N for both fixed 
and oscillating cylinders, with more disturbances in 
the case of the fixed cylinder. The drag force for the 
fixed cylinder has a harmonic behavior with 
amplitude and frequency equal to 0.0020N and 
8.313Hz, respectively. For the oscillating cylinder, 
this force oscillates periodically (frequency of 
8.163Hz) within an envelope with minimum and 
maximum amplitudes of 0.0014N and 0.0020N, 
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respectively. Although these amplitudes are higher 
than those in the previous case (Re=105), the 
displacements are smaller, since this Reynolds 
number, Re=123, is out of the lock-in region. 
 

 

 
 

Figure 9. Drag (a) and lift (b) forces for cylinder with 
Re=105. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Drag (a) and lift (b) forces for cylinder 
with Re=123. 

 

CONCLUSIONS 
 

In this paper, numerical analyses of the 
phenomena that occur in the interaction among flows 
at low Reynolds numbers and elastically mounted 
cylinders were presented. The simulation was carried 
out by a numerical model, Ifeinco, that uses a semi-
implicit two-step Taylor-Galerkin method to 
discretize the Navier-Stokes equations and the 
arbitrary Lagrangean-Eulerian formulation to follow 
the cylinder motion. The rigid body motion 
description is calculated by using the Newmark 
method. 

For the fixed cylinder, the behavior of the 
vortex formation was correctly reproduced: near the 
cylinder surface, the larger vortex was in one 
direction, while the opposing vortex was in another 
one. The Strouhal numbers were calculated for 
Reynolds number range from 95 to 140. These values 
were similar to those obtained by Willianson's 
experiments. The mean drag and the RMS lift 
coefficients were also calculated and compared with 
those obtained by Poldsziech and Grundmann (2007) 
and Baranyi and Lewis (2006), respectively. Good 
agreements were obtained (0.8% and 0.2%, 
respectively) and showed the accuracy of the 
numerical simulation. 

For interaction among the cylinder mounted on 
an elastic fixing in transverse direction and flows, the 
lock-in phenomenon was captured for Reynolds 
numbers between 105 and 110, characterized by the 
increase of the amplitude and the equality of 
vibration and natural frequencies. Comparing the 
numerical and the experimental results 
(Anagnostopoulos and Bearman, 1992), some 
differences were observed due to the presence of the 
three-dimensional effects of the experiment that were 
not considered in these numerical simulations. 
Comparing the results obtained by Ifeinco with 
numerical ones obtained by Dettmer and Perić 
(2006), it was show that both numerical results are 
similar in terms of amplitudes of cylinder motion and 
frequencies for the Reynolds number range studied, 
confirming the ability of the Ifeinco code for 
modeling complex fluid-structure interaction 
phenomena. 
 
ACKNOWLEDGEMENTS 
 

The first author wishes to thank CAPES for the 
post-graduate scholarship. The second author 
acknowledges the support of Conselho Nacional de 
Desenvolvimento Científico e Tecnológico (CNPq - 
project 303308/2009-5). 
 
REFERENCES 
 

Al-Jamal, H., and Dalton, C., 2004, Vortex 
Induced Vibrations Using Large Eddy Simulation at a 
Moderate Reynolds Number, Journal of Fluids and 

(b) 

(a) 

(b) 

(a) 



Ciência/Science    Gonçalves et al. Numerical Simulations of Low Reynolds … 

Engenharia Térmica (Thermal Engineering), Vol. 11 • No. 1-2 • June and December 2012 • p. 61-67 67

Structures, Vol. 19, No. 1, pp. 73-92. 
Anagnostopoulos, P., and Bearman P. W., 1992, 

Response Characteristics of a Vortex-Excited 
Cylinder at Low Reynolds Numbers, Journal of 
Fluids and Structures, Vol. 14, No. 6, pp. 39-50. 

Baranyi, L., and Lewis, R. I., 2006, Comparison 
of Grid-Based and Vortex Dynamics Predictions of 
Low Reynolds Number Cylinder Flows, Aeronautical 
Journal, No. 2983, pp. 63-71. 

Bathe, K. J., 1996, Finite Element Procedures, 
Prentice-Hall. 

Breuer, M., 2000, A Challenging Test Case for 
Large Eddy Simulation: High Reynolds Number 
Circular Cylinder Flow. International Journal of Heat 
Fluid Flow, Vol. 21, No. 5, pp. 648-654. 

Dettmer, W., and Perić, D., 2006, A 
Computational Framework for Fluid-Rigid Body 
Interaction: Finite Element Formulation and 
Applications, Computer Methods in Applied 
Mechanics and Engineering, Vol. 195, pp. 1633-
1666. 

Guilmineau, E., and Queutey, P., 2004, 
Numerical Simulation of Vortex-Induced Vibration 
of a Circular Cylinder with Low Mass–Damping in a 
Turbulent Flow, Journal of Fluids and Structures, 
Vol. 19, pp. 449-466. 

Mittal, S., and Kumar, V., 2001, Flow-Induced 
Vibrations of a Light Circular Cylinder at Reynolds 
Numbers, Journal of Sound and Vibration, Vol. 5, 
No. 245, pp. 923-946. 

Nobari, M. R. H., and Naredan, H., 2006, A 
Numerical Study of Flow Past a Cylinder with Cross 
Flow and Inline Oscillation. Computers of Fluids, 
Vol. 35, No. 4, pp. 393-415. 

Pasquetti, R., 2005, High-Order Methods for the 
Numerical Simulation of Vertical and Turbulent 
Flows-High-Order LES Modeling of Turbulent 
Incompressible Flow, Comptes Rendus Mécanique, 
Vol. 333, No. 1, pp. 39-49. 

Poldsziech, O., and Grundmann, R., 2007, A 
Systematic Approach to the Numerical Calculation of 
Fundamental Quantities of the Two-Dimensional 
Flow Over Circular Cylinder, Journal of Fluids and 
Structures, Vol. 23, pp. 479-499. 

Placzek, A., Sigrist, J., and Hamdouni, A., 2009, 
Numerical Simulation of an Oscillating Cylinder in a 
Cross-Flow at Low Reynolds Number: Forced and 
Free Oscillations, Computer & Fluids, Vol. 38, No. 1, 
pp. 80-100. 

Saghafian M., Stansby, P. K., Saidi, M. S., and 
Apsley, D. D., 2003, Simulation of Turbulent Flows 
Around a Circular Cylinder Using Nonlinear Eddy-
Viscosity Modeling: Steady and Oscillatory Ambient 
Flows, Journal of Fluids and Structures, Vol 15, No. 
1, pp. 1213-1236. 

Teixeira, P. R. F., and Awruch, A. M., 2001, 
Three-Dimensional Simulation of High Compressible 
Flows Using a Multi-Time-Step Integration 
Technique with Subcycles, Applied Mathematical 
Modelling, Vol. 25, pp. 613-627. 

Teixeira, P. R. F., and Awruch, A. M., 2005, 
Numerical Simulation of Fluid-Structure Interaction 
Using the Finite Element Method, Computers & 
Fluids, Vol. 34, pp. 249-273. 

Willianson, C. H. K., 1989, Oblique and Parallel 
Modes of Vortex Shedding in the Wake of a Circular 
Cylinder at Low Reynolds Numbers, Journal of Fluid 
Mechanics, Vol. 206, pp. 579-627. 


