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ABSTRACT 
As waves travel and shoal towards a beach, their surface 

elevation becomes peaky (sharp crests) and asymmetric 

relative to the vertical, differing from the sinusoidal 

profile of linear waves. Below the surface, the passage of 

the progressive waves induces fluid velocities, showing 

similar (time) asymmetries. These nonlinearities are 

inextricably linked to sediment transport, but the 

processes involved are not well understood. This work 

analyses the data collected during a recent experimental 

project under skewed oscillatory flows. It validates a 

simple method based on the defect law to reproduce the 

horizontal velocities within the wave bottom boundary 

layer. Results indicate a good agreement between the 

measured and modeled velocities using this methodology. 
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1. Introduction 
 

Sediment transport is mainly caused by the action of 

waves or currents or, a combination of both. For 

increasingly shallow waters, these hydrodynamic 

processes induce motions on the seabed and if the grains 

are exposed to large enough velocities they start to move. 

The processes that intervene in the mechanisms of 

sediment transport are complex (e.g., forces at mobile 

beds, sediment-flow interactions) and the scientific 

community has been engaged in improving our 

understanding and modelling capabilities. Though several 

progresses have been made in the past decades, this issue 

remains a challenge to researchers. 

 The poor understanding of the processes is partially 

due to the complexity of the energetic nearshore and to 

the scarcity of available comprehensive and high quality 

datasets about detailed sediment transport mechanisms. 

Also, measurements of the complex sediment-flow 

interactions and forces still pose challenging technical 

difficulties. Accurate measurements of the flow velocity 

in the bottom boundary layer under oscillatory motions 

require high-end equipments, which usually cannot 

operate in field conditions. Even in laboratory controlled 

conditions, this requires sophisticated equipment 

operation, data protocols and data processing techniques. 

It is thus desirable to develop theories which allow 

estimating the velocity in such wave motions. 

 This work presents a simple method based on the 

defect law [1] to reproduce the horizontal velocities 

within the wave bottom boundary layer. The theory is 

checked against the measured velocity profiles gathered 

with a high resolution ADVP (Acoustic Doppler Velocity 

Profiler). The data was collected during a recent 

experimental project performed at the Large Oscillating 

Water Tunnel of Deltares under flat-bed/sheet flow 

conditions, allowing to analyse the effects of wave 

nonlinearities and of a net current on the sediment 

transport processes [2, 3, 4]. 

 

 

2. TRANSKEW Experiments 
 

2.1 Experimental Set-up 

 

Intense wave orbital velocities near the bed, occurring 

typically in the coastal surf zone or even at intermediate 

water depths during storm conditions, can cause the sand 

bed to move as a sheet layer, known as sheet flow. This 

happens for large shear stresses, causing the development 

of extremely large sediment concentrations and, 

consequently, high sediment transport rates. 

 A recent series of experiments to evaluate the net 

transport rates in sheet flow under oscillatory skewed 

flows were performed in the Large Oscillating Water 

Tunnel of Deltares (LOWT) [2,3]. 

 The tunnel has the shape of a U-tube, consisting of a 

long (14m), rectangular, horizontal section connected to a 

vertical cylinder at each end (Figure 1). The tunnel was 

designed for full-scale simulation of the near-bed 

horizontal oscillating water motion, which can be 

combined with a steady current. Scale effects, typical of 

sediment transport studies in smaller laboratory wave 

flume facilities, are therefore avoided. The desired motion 

in the test section is created by the movement of the 



 

 

piston in one of the cylinders. Detailed descriptions of the 

facility can be found in [5]. In the present experiments, 

the bottom of the tunnel was covered with a 0.3 m layer of 

well-sorted sand with a median diameter, d50  0.20 mm. 

Net sediment transport rates and detailed measurements of 

time-dependent sand concentrations and flow velocities in 

the suspension and sheet flow layers were determined 

using various instruments [2,4,6].  

 For the aim of the present work, one focuses on the 

velocity time-series collected by an Electromagnetic Flow 

Meter (EMF), above the wave boundary layer (at 

approximately 30 cm above the initial bed level), and by 

an Acoustic Doppler Velocity Profiler  [7] located 35 cm 

above the bed, pointing downwards. The EMF provides 

information of the measured free-stream horizontal 

velocities, whereas the acoustic device measures velocity 

profiles near the bottom and within the entire boundary 

layer. 

 
Figure 1. General outline of LOWT 

 

2.2 Test Conditions 

 

The steering signal of the piston has to be formulated in 

order to reproduce the desired hydraulic conditions in the 

test section. In the present experiments a regular sawtooth 

oscillatory flow with different degrees of acceleration 

skewness was devised (with or without a net current) as 

well as an oscillatory flow with both velocity and 

acceleration skewness. 

 In the experiments a more general expression for 

velocity- and acceleration-skewed oscillatory flows was 

developed by [8] and used to drive the LOWT piston, 

surpassing some limitations of the previous existing 

formulae. The regular horizontal free-stream velocity, u, 

is given by the general form:  
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where Uw represents the amplitude of the orbital velocity, 

Uw = (umax-umin)/2, ω = 2π/T is the angular frequency of a 

flow period T, and the dimensionless factor 21f r   
allows the velocity amplitude to be equal to Uw. 

Furthermore, r is an index of skewness or nonlinearity, 

and  is a waveform parameter related to the biphase (e.g., 

[9]; [10]). Eq. (1) represents a wide range of nearshore 

nonlinear wave orbital velocity shapes, depending on the 

value that the waveform parameter  ( 2 2     ) 

takes. A purely acceleration-skewed flow (i.e. sawtooth 

wave) is obtained for  = 0 and a pure velocity-skewed 

flow for  = -π/2. Between these two extreme values the 

orbital flow contains both velocity and acceleration 

skewness. 

For the particular conditions of combined oscillatory-

current flow, a net current, U0, was added to the 

oscillatory signal imposed by Eq. (1). 

 

Table 1 

Experimental conditions 

Condition Uw 

(m/s) 

U0 

(m/s) 

T 

(s) 

r 

(-) 
 

(rad) 

A1 1.2 0 7 0.30 0 

A3 1.2 0 7 0.50 0 

C1 1.2 0 7 0.50 -/4 

B2 1.2 -0.4 7 0.30 0 

B4 1.2 -0.4 7 0.50 0 

 

 Table 1 lists the characteristics of the 5 different test 

conditions (A1, A3, B2, B4 and C1) that are considered in 

this work. Series A consisted of regular oscillatory flows 

with different degrees of acceleration skewness; series B 

considered acceleration-skewed oscillatory flows with a 

collinear net current (U0), opposing the (implied) wave 

direction; and series C involved a condition with both 

velocity- and acceleration-skewness. 

 Figure 2 plots the free-stream velocity, u, for tests 

A1, A3 and C1, using Eq. (1). The differences between 

the shapes of u are due to differences between the values 

of r and . 
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Figure 2. Free-stream velocity for tests A1, A3 and C1 

 

2.3 Velocity Measurements 

 

Detailed velocity measurements within the bottom 

boundary layer were obtained with a high resolution 

Acoustic Doppler Velocity meter Profiler (ADVP). The 

device provides detailed velocity measurements from 

approximately 150 mm above the bed to within the sheet 

flow layer [7]. It is composed of a sensor emitting at 



 

 

2 MHz and two receivers positioned at the same depth (in 

this experiment about 35 cm above the bed) and 7.9 cm to 

the centre of the emitter (Figure 3). The acoustic pulse is 

repeated at 1.6 kHz. The phase shift of the backscattered 

acoustic signal is recorded every 4 μs. This enables to 

deduce velocities along the receivers beam axis over a 

whole profile with a vertical resolution of about 3 mm, 

leading to an equivalent acquisition frequency of 50 Hz. 

 

 
Figure 3. Acoustic Doppler Velocity meter Profiler 

 

From the available number of flow cycles, Nc (≈ 36), 

the instantaneous velocity obtained with the ADVP were 

converted in to phase-averaged velocities, û, according to: 

 

    
1

1
, , 1

cN

nc

û z t u z t n T
N 

   , 0 t T  ,  (2) 

where Nc represents the number of flow cycles. The 

vertical coordinate denoted z is positive upward and z = 0 

is defined as the initial bed level at the beginning of the 

experiments, prior to wave action. Figure 4 and Figure 5 

show results of the phase-averaged velocities for the 

oscillatory flow conditions A3 and B4, respectively. At 

the reference level z = 0 the flow does not present 

velocities equal to zero. This is due to the development of 

the sheet flow layer structure that mobilizes fluid and 

particles at lower levels. In addition, during each 

experiment, there were some small bed level changes of 

the order of a few millimetres that were accounted for in 

the ADVP post processing. 

 The figures provide a good insight of the vertical 

structure of u(z). The results exhibit typical features of the 

oscillatory bottom boundary layer: the velocity magnitude 

first increases with distance from the bed, with an 

overshoot velocity within the range z = 10-30 mm from 

the bed and, near the bottom, the velocity time series lead 

the free-stream velocity in phase. In addition, the 

influence of the acceleration skewness (test A3) leads to a 

stronger overshoot velocity and a thinner boundary layer 

under the positive (onshore) velocities. 

 The comparison of the velocity time series at the 

upper level (z = 140 mm) obtained with the ADVP and 

with the EMF (z = 300 mm), shows that the test without a 

counter current (Figure 4) presents some mismatches 

around flow reversal. This is probably due to the low 

seeding in the upper part (z > 3 cm), during part of the 

wave cycle [4], affecting the ADVP measurements. 

 The top panel of Figure 5 also plots the mean 

horizontal velocity profile, ū(z), for test B4 (black solid 

line). The results indicate that the counter current 

increases from the bottom reaching the free-stream value 

of U0 at approximately z = 80 ~ 90 mm. 
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Figure 4. Test A3. a) Phase-averaged velocity profiles; b) 

Velocity time series at z = 0, 3, 9, 140 mm (ADVP) and at 

300 mm (EMF) 

 

 

3. Defect Law 
 

Following [1], the velocities u(z,t) inside the wave bottom 

boundary layer can be written in terms of the free-stream 

velocity, u∞(t), and a velocity defect ud(z,t): u(z,t) = u∞(t) – 

ud(z,t). This equation can be written in terms of a 

dimensionless velocity defect complex function D1(z): 

 

      1, 1u z t D z u t      (3) 

 

 For laminar oscillatory flows it can be deduced ([1]) 

that: 
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where  is the kinematic viscosity and i is the imaginary 

unit of complex numbers. 
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Figure 5. Test B4. a) Phase-averaged velocity profiles; b) 

Velocity time series at z = 0, 3, 9, 140 mm (ADVP) and at 

300 mm (EMF) 

 

 Eq. (4) implies that the vertical scale of the laminar 

oscillatory flow is the Stokes length 2  . For turbulent 

flows, [1] suggests that a similar expression can be used: 
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which reduces to Eq. (4) for p1 = 1 and 1 2z   . 

Hence, z1 represents the velocity decay length scale, 

whereas p1 is associated to the velocity gradients. For 

example, smaller values of p1 imply larger velocity 

gradients and, consequently, enhanced bed shear stress. 

The parameters z1 and p1 are derived from an analysis of 

the primary harmonic of the velocity records. 

 It is noticed that if z1 and p1 adjust well the data, it 

means that the vertical velocity profile can be estimated 

with somewhat reduced information. They allow to obtain 

D1(z), which combined with u∞(t), provide values for 

u(z,t) through Eq. (3) (e.g., [11]). In addition, the velocity 

gradients resulting from this process can be used to assess 

bed shear stresses. 

 To obtain z1 and p1 the measured velocities u(z,t) are 

decomposed in a Fourier series: 
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where n represents the rank of the harmonics (n = 1 

corresponds to the fundamental component) and an and bn 

are the Fourier coefficients. Then, the first harmonic 

coefficients a1 and b1 are computed: 
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and are converted to magnitude, r1, and phase 

coefficients, 1: 
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 These coefficients are directly linked to the real and 

imaginary parts of D1(z) (see Figure 6). 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re(u) (m/s)

Im
(u

) 
(m

/s
)

 

 ,u z t  

 u t
 

   1D z u t
 

  1Imr D z  
  1Rer D z  

 Im u  

 Re u  
  

 1 z  

 
Figure 6. Visualisation of u(z,t) in the complex plane 

  

Figure 6 schematises the result of Eq. (3) in which u(z,t) is 

constructed geometrically in the complex plane [1]. The 

solution gives a spiral that starts at the origin of the 

coordinates, corresponding to the bed where the velocity 

is zero, and ends at the free-stream velocity, where the 

distance to the origin equals the amplitude of u∞. The free-



 

 

stream velocity and a generic point u(z,t) are represented 

as rotating vectors in the complex plane. For a certain 

elevation z, the module of the vector u(z,t) represents the 

velocity amplitude and 1 - ∞ correspond to the 

differences in phase between u(z,t) and u∞(t). The values 

of these phase differences, u(z), can be calculated from 

D1(z): 
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 The real and imaginary parts of D1(z) can be rewritten 

as: 
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with ln|D1(z)| and Arg{D1(z)} derived from the 

measurements, the two parameters z1 and p1 are derived as 

shown in Figure 7. 

 
Figure 7. -ln|D1(z)| and –Arg{D1(z)} derived from the 

measurements of [12]. The corresponding values of z1 and 

p1 are determined from the straight line on log-log 

(adapted from [1]) 

 

 

4. Results 
 

A first harmonic analysis was obtained from the ADVP 

detailed measurements, providing good insights of the 

oscillatory boundary layer structure of the flows. Figure 8 

exemplifies the vertical structure of r1 / r∞ and u for tests 

A3 and B2 (see Eq.s (9) and (11)). The first column 

evidences that the local velocity amplitude (r1) increases 

from the bed and oscillates as a dampened wave around 

the free-stream value (r∞) for higher elevations. At about 

z ≈ 30 mm the overshoot velocity is reached, leading to 

r1 / r∞ = 1.14 and 1.06 for A3 and B2, correspondingly. 

 The second column of Figure 8 shows a positive 

phase lead u from 0 at z > 30 mm, peaking to values of 

approximately 15º at z = 6 mm. Bellow z = 6 mm the 

values of u reduce to less than 10º for A3 and even to 

close to 0º for B2 at z = 0. These phase leads and 

differences can also be observed at the upper plots of 

Figure 4 and Figure 5, evidencing that the 1
st
 harmonic 

from the defect law method captures immediately these 

features.  

 This contrasts with the acceleration-skewed, fixed-

bed experiment results of [13] where u continuously 

increases towards the bed. However, other mobile-bed 

experiments (e.g., [14,15]) and two-phase model 

simulations (e.g., [16,15]) present similar vertical 

structures of u as those observed in the TRANSKEW 

experiments. The differences between fixed and mobile-

bed experiments may point to an effect to the high near-

bed sand concentrations on the flow in the wave boundary 

layer [15]. Furthermore, the oscillatory flow experiments 

with superimposed currents of [14] also suggest a stronger 

reduction in u close to the bed. Thus, apparently, the 

mean-flow further contributes to the stronger reduction in 

u. 
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Figure 8. First harmonic analysis for tests A3 and B2. 

Vertical structure of r1 / r∞ and u. 

 



 

 

 Figure 9 plots the vertical evolution of -ln|D1(z)| and 

–Arg{D1(z)} on a log-log scale for the five tests. The z 

origin was replaced, adding 5 mm to all the ADVP levels 

to account for the presumable location of the non-moving 

bed [17]. The power p1 in Eq. (5) relies on the slope of the 

best straight-line fit of -ln|D1(z)| (upper panel of Figure 9). 

The vertical scale z1 is obtained from -ln|D1(z)|=1. For the 

overall experiments, one founds that the values of z1 are 

within the range 9-10 mm and p1 ≈ 0.90. The tests without 

a counter current (A1, A3 and C1) have some mismatches 

in the upper part (z >30 mm) regarding the fitting to a 

straight-line, which might be attributed to the low 

suspended concentrations during parts of the flow cycle 

[4]. 
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Figure 9. Vertical evolution of -ln|D1(z)| and –Arg{D1(z)} 

for the five test conditions. The continuous lines refer to 

Eq.s (13) and (14) 

 

 Moreover, it is possible to observe in the lower panel 

of Figure 9 that for higher elevations (> 20 mm) 

-Arg{D1(z)} follow quite reasonably the linear trend 

found for -ln|D1(z)| (black line). This agrees with [1] 

observations, where the structure of the turbulent 

boundary layer is very similar to that of smooth, laminar 

flow in which the real and imaginary parts of the complex 

logarithm of the defect function are approximately 

identical along the water column 

(Re{ln(D1(z))} = Im{ln(D1(z))}, or equivalently, 

-ln|D1(z)| = -Arg{D1(z)}. Nevertheless, the TRANSKEW 

experiments reveal some divergence between ln|D1(z)| and 

Arg{D1(z)} at lower elevations and other linear trends 

could be assumed. 

 The following expressions represent the continuous 

lines shown in Figure 9 which roughly approximate the 

trends of the five flow conditions: 

 

   
0.90

0.010

1

z
D z e


     (13) 

  
 

 

0.90

1 2.0

0.010 , 0.021
Arg

0.015 , 0.021

z z m
D z

z z m

 
  



.  (14) 

  

 The value of z = 0.021 m in Eq. (14) was chosen to 

obtain the continuity between the two straight-lines with 

different slopes. Figure 10 plots the vertical evolution of 

the phase lead u using Eq. (11), with the results 

expressed by Eq.s (13) and (14). Additionally the identity 

of Arg{D1(z)} and ln|D1(z)| is assumed through the use of 

Eq. (13). The results reveal that the reduction of the phase 

lead u closer to the bed, observed in Figure 8 is recreated 

when ln|D1(z)| ≠ Arg{D1(z)}. As depicted in Figure 8, B2 

presents a stronger decay toward 0 as the bed is 

approached, suggesting a somewhat lower slope in the 

second branch of Eq. (14). That can be confirmed in the 

right panel of Figure 9. 

 

0

20

40

60

80

100

120

-10.0 0.0 10.0 20.0 30.0 40.0

z 
(m

m
)

ψ (º)

Arg{D1}≠ ln|D1|

Arg{D1}≡ln|D1|

 
u (º) 

 
 

Figure 10. Velocity phase difference, u, assuming 

ln|D1(z)| ≡ Arg{D1(z)}  and ln|D1(z)| ≠ Arg{D1(z)} 

 

 As the vertical structure of the velocity, through 

D1(z), was shown to be well defined by Eq.s (13) and (14) 

with the use of simple parameters (z1 and p1), it is possible 



 

 

to convert them into magnitude and phase coefficients, 

r1(z) and 1(z) , using Eq.s (12) and (13). This procedure 

surpasses the incongruent measurements associated with 

low seeding in the upper part (z > 3cm) observed for A1, 

A3 and C1 during part of the wave cycle. Such 

information, combined with the EMF free-stream 

velocity, u∞(t), enables the reconstruction of u(z,t). 

Figures 11 and 12 exemplifies, for tests A3 and B2, the 

ADVP phase averaged velocities and the predicted 

velocities according to the defect law analysis. Though 

the reconstruction relies only on the 1
st
 harmonic 

component, the results agree fairly well with the ADVP 

measurements, showing that the defect law reproduces the 

typical features of the wave boundary layer: (1) the 

velocity magnitude generally increases with distance from 

the bed, (2) at different levels the velocities are not in 

phase, (3) an overshoot of the velocity occurs at a certain 

elevation (2-4 cm) above the bed. 
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Figure 11. Test A3 – ADVP phase-averaged and predicted 

velocities (m/s) according to the defect law 
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Figure 12. Test B2 – ADVP phase-averaged and predicted 

velocities (m/s) according to the defect law 

 

 

 

5. Conclusion 
 

Detailed measurements of time-dependent flow velocities 

obtained with a high resolution Acoustic Doppler 

Velocity meter Profiler allowed the development, 

application and validation of the defect law, enhancing 

features of the flow within the boundary layer. The 

dataset was generated by full-scale, regular, acceleration- 

and velocity-skewed oscillatory flows combined with 

opposing net currents, under sheet flow conditions. 

The results agree fairly well with the high resolution 

ADVP measurements and show that the defect law 

reproduces typical features of the wave boundary layer: 

(1) the velocity magnitude generally increases with 

distance from the bed, (2) at different levels the velocities 

are not in phase, (3) an overshoot of the velocity occurs at 

a certain elevation (2-4 cm) above the bed. 

 The consistence of the values suggests that the defect 

law is verified with the TRANSKEW data and that the 

use of the defect law can be useful to correct and predict 

the values where the ADVP failed. In addition, when 

applied to mobile beds, the methodology replicates the 

reduction of velocity phase differences, u, if different 

values of z1 and p1 are assumed for lower elevations in 

  1Arg D z . It is noted that, according to [1], the 

parameters z1 and p1 could be prescribed as function of the 

relative roughness (A/ks) and the Reynolds number 

 2Re A   . Therefore, in the future, it would be 

interesting to investigate such relations in different flow 

regimes for several experiments. Furthermore, this simple 

methodology appears promising in many engineering 

applications that require the knowledge and modelling of 

the wave boundary layer flow, such as bed shear stresses 

and sediment transport. 
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