EU project CHARISMA - ITINERANT COURSE ON STONE CONSERVATION - LNEC, 7-18 May 2012

Case-studies in plastering and rendering mortars. Sampling and testing for salts

Teresa Diaz Gonçalves

EU project CHARISMA - ITINERANT COURSE ON STONE CONSERVATION - LNEC, 7-18 May 2012

Case-studies in plastering and rendering mortars. Sampling and testing for salts

Lecture contents

- Four case studies in Portugal (indicated by IPPAR + DGMN)

Methodology

Salvas church, Sines

Alhos Vedros tide-mill

House of Despacho, Pereira, Coimbra

Santa Clara-a-Nova Monastery, Coimbra

- Inspection form

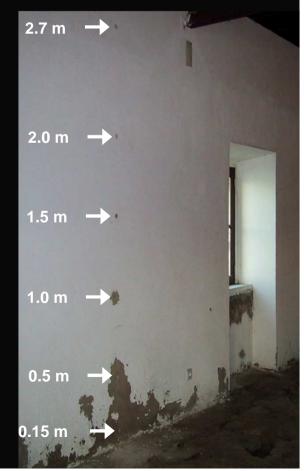
Diagnoses are rarely based on 100% certainty:

- complexity of the problems
- financial restrictions (normal...) => limitations in the number and type of analyses

- Site-inspections
- Sampling / testing

- Site-inspections
- Sampling / testing
 - Moisture and salt distribution evaluated in selected walls

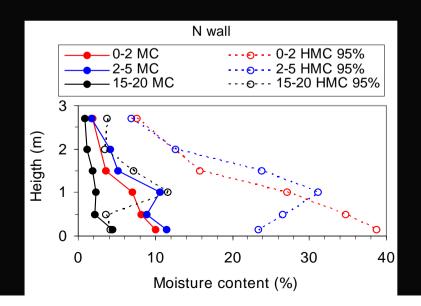
- Site-inspections
- Sampling / testing
 - Moisture and salt distribution evaluated in selected walls
 - Samples collected by powder-drilling
 - 16 or 20 mm rotary drills

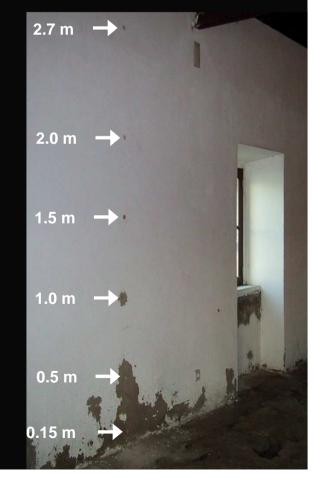


- Site-inspections
- Sampling / testing

• Moisture and salt distribution evaluated in selected walls

- Samples collected by powder-drilling
- 16 or 20 mm rotary drills
- Several heights and depths

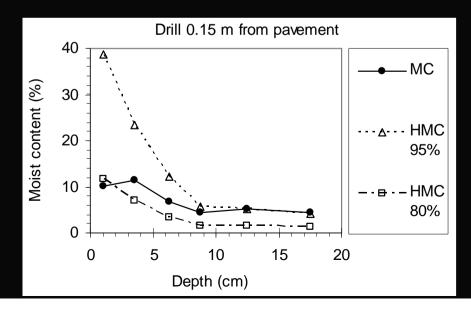


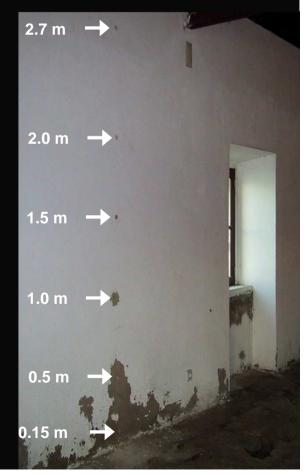


- Site-inspections
- Sampling / testing

• Moisture and salt distribution evaluated in selected walls

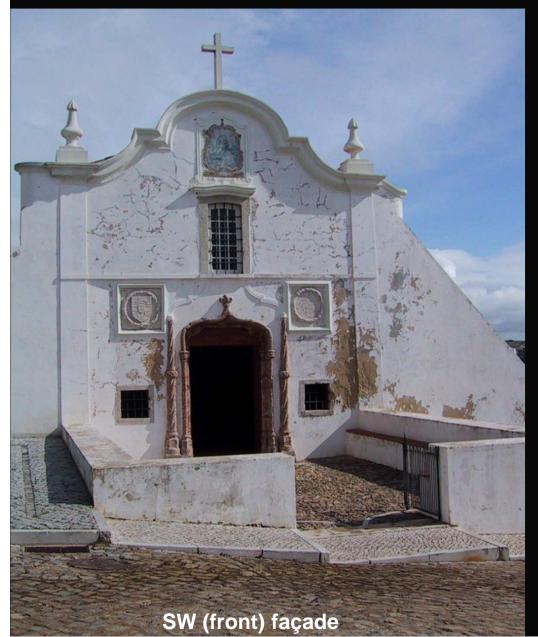
- Samples collected by powder-drilling
- 16 or 20 mm rotary drills
- Several heights and depths
- MC => mass loss after oven drying at 105°C
- HMC => mass increase at 20°C and 96% RH





- Site-inspections
- Sampling / testing

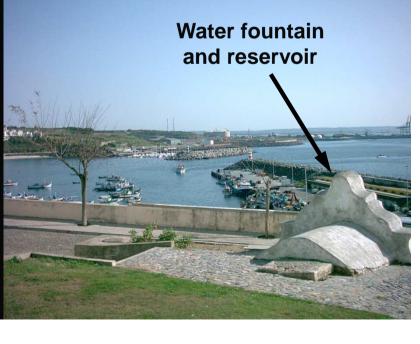
• Moisture and salt distribution evaluated in selected walls


- Samples collected by powder-drilling
- 16 or 20 mm rotary drills
- Several heights and depths
- MC => mass loss after oven drying at 105°C
- HMC => mass increase at 20°C and 95% RH

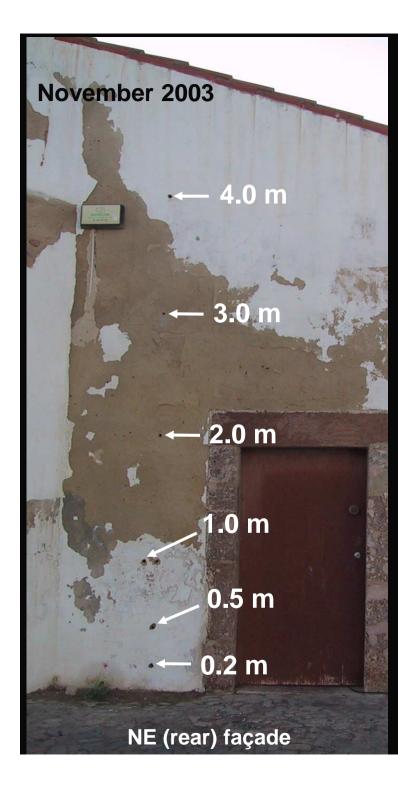
- Site-inspections
- Sampling / testing
 - Moisture and salt distribution evaluated in selected walls
 - Samples collected by powder-drilling
 - 16 or 20 mm rotary drills
 - Several heights and depths
 - MC => mass loss after oven drying at 105°C
 - HMC => mass increase at 20°C and 96% RH
 - Soluble salts investigated by means of:
 - Ion chromatography
 - XRD / EDS

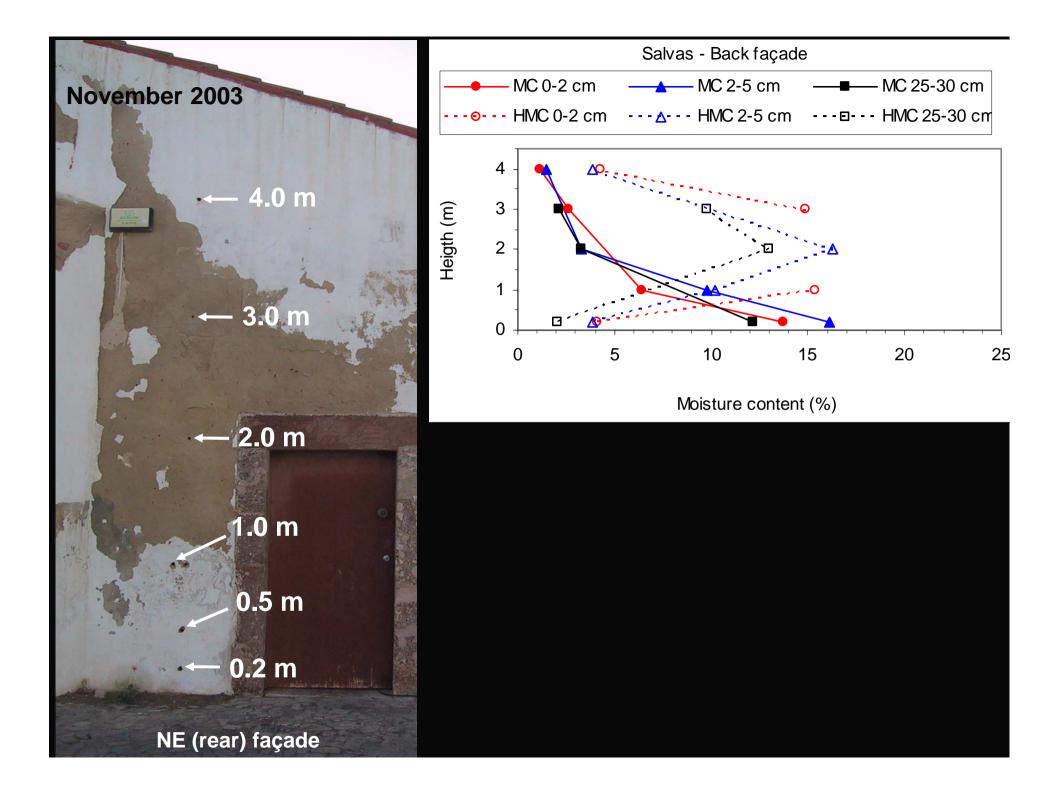
- Site-inspections
- Sampling / testing
 - Moisture and salt distribution evaluated in selected walls
 - Samples collected by powder-drilling
 - 16 or 20 mm rotary drills
 - Several heights and depths
 - MC => mass loss after oven drying at 105°C
 - HMC => mass increase at 20°C and 96% RH
 - Soluble salts investigated by means of:
 - Ion chromatography => Na^+ , K^+ , Mg^{2+} , Cl^- , NO_3^- , SO_4^{2-}
 - XRD / EDS
 - XRD => mineralogical composition (content ≥ 2 to 4% W)
 - EDS (energy-dispersive X-ray spectroscopy) => semiquantitative info about content
 - on efflorescence, when it was visible
 - on the fine fraction, after elimination of material retained on 106 μm sieve

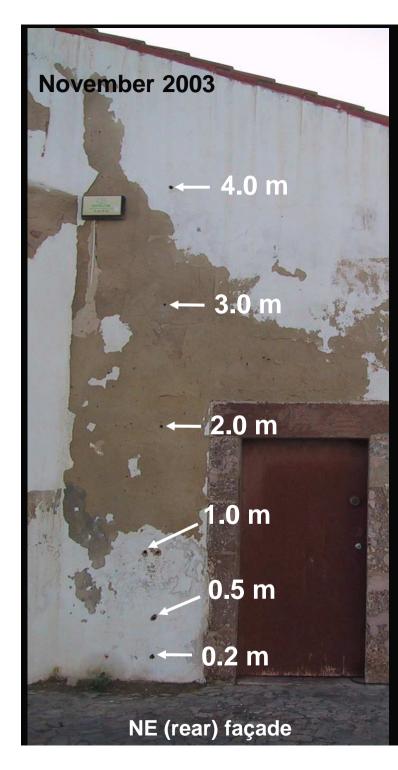
- Built 1529 by Portuguese navigator Vasco da Gama (to thank the success of his trip to discover the sea route to India)
- Façade dates from XVIII century
- 1997 => lime render (small percentage of cement) + lime-wash

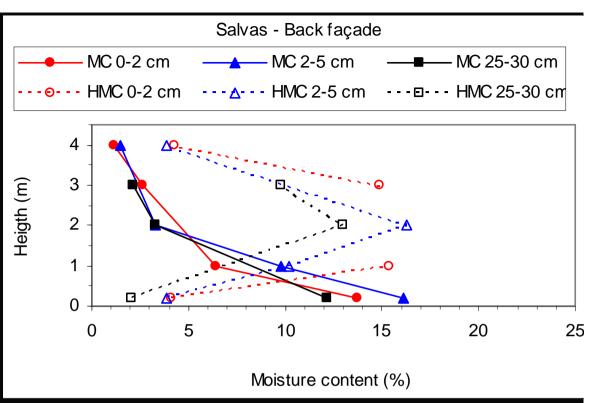

Damage (2004):

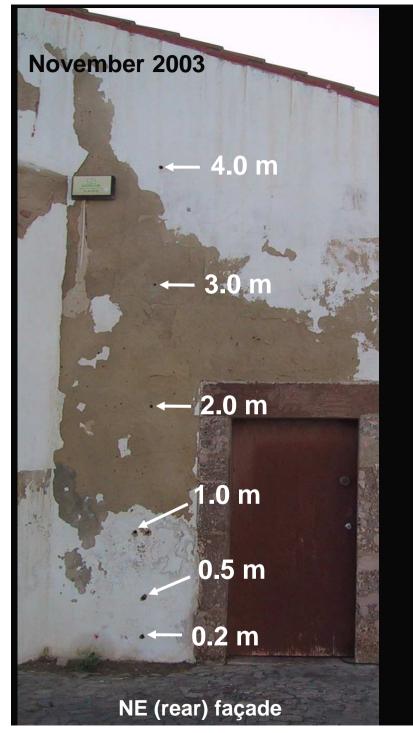
- cracking, sanding of the render, erosion
- 60% of the surface damaged
- reached more than 4 m height
- mainly at the walls middle height

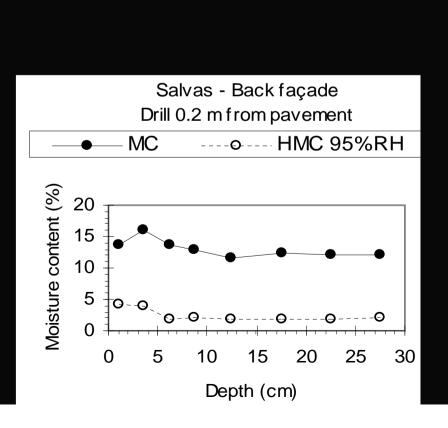


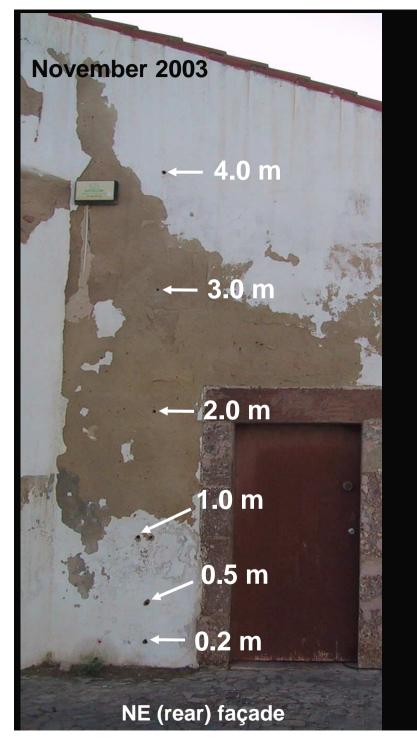

- Next to Sines harbour lateral SE façade faces Sines
 - harbour (150 km south of Lisbon)
- Next to water fountain




damage seems to start at the cracks ...

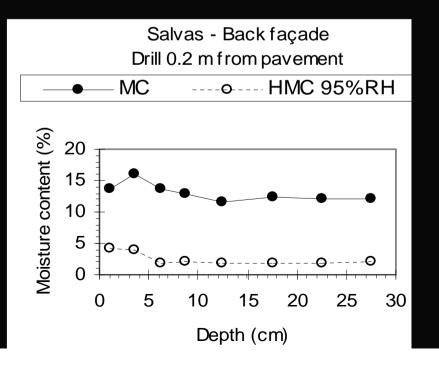






- MC => rising damp seems very significant:
 - at the base of the wall, the MC is very high (and much higher than the HMC)
 - MC decreases with the distance to the pavement
- HMC => the stronger accumulation of salt occurs at around 2m from the pavement
 - close to the ground the moisture content is very high => stage I conditions => efflorescence (washed out ...)

In-depth analysis at the lower drilling hole (0.2 m from the pavement)



In-depth analysis at the lower drilling hole (0.2 m from the pavement):

- both the MC and the HMC are constant inside the wall
- the MC is high and much higher than the HMC

Features characteristic of rising damp...

(3 mm thick sample)					
Halite (NaCl)	+/++				
Calcite, $CaCO_3$	+++				
Quartz, SiO ₂	++				
Feldspars	vtg/+				
Mica	vtg				

XDR/EDS on the fine fraction

Ion content of samples 0-2cm

Height (m)	Na ⁺	K+	Mg ²⁺	Cl-	NO ₃ ⁻	SO ₄ ²⁻
3.0	0.33	0.07	nd	0.60	0.33	0.08
0.5	0.05	0.04	nd	0.16	0.04	0.09

- DRX/EDS => halite (sea water ... marine fog ...)
- IC => chloride (sea) + some nitrate (ground)

(3 mm thick sample)					
Halite (NaCl)	+/++				
Calcite, $CaCO_3$	+++				
Quartz, SiO ₂	++				
Feldspars	vtg/+				
Mica	vtg				

XDR/EDS on the fine fraction

Ion content of samples 0-2cm

Height (m)	Na ⁺	K+	Mg ²⁺	Cl-	NO ₃ ⁻	SO ₄ ²⁻
3.0	0.33	0.07	nd	0.60	0.33	0.08
0.5	0.05	0.04	nd	0.16	0.04	0.09

- DRX/EDS => halite (sea water ... marine fog ...)
- IC => chloride (sea) + some nitrate (ground)



XDR/EDS on the fine fraction (3 mm thick sample)

Halite (NaCl)	+/++
Calcite, CaCO ₃	+++
Quartz, SiO_2	++
Feldspars	vtg/+
Mica	vtg

XDR/EDS on the fine fraction
(3 mm thick sample)Halite (NaCl)+/++Calcite, CaCO3+++Quartz, SiO2++Feldsparsvtg/+Micavtg

(3 mm thick sample)					
Halite (NaCl)	+/++				
Calcite, CaCO ₃	+++				
Quartz, SiO_2	++				
Feldspars	vtg/+				
Mica	vtg				

Ion content of samples 0-2cm

Height (m)	Na ⁺	K+	Mg ²⁺	Cl-	NO ₃ -	SO ₄ ²⁻
3.0	0.33	0.07	nd	0.60	0.33	0.08
0.5	0.05	0.04	nd	0.16	0.04	0.09

(3 mm thick sample)					
Halite (NaCl)	+/++				
Calcite, CaCO ₃	+++				
Quartz, SiO_2	++				
Feldspars	vtg/+				
Mica	vtg				

Ion content of samples 0-2cm

Height (m)	Na ⁺	K^+	Mg ²⁺	Cl-	NO ₃ -	SO ₄ ²⁻
3.0	0.33	0.07	nd	0.60	0.33	0.08
0.5	0.05	0.04	nd	0.16	0.04	0.09

(3 mm thick sample)					
Halite (NaCl)	+/++				
Calcite, $CaCO_3$	+++				
Quartz, SiO ₂	++				
Feldspars	vtg/+				
Mica	vtg				

XDR/EDS on the fine fraction

Ion content of samples 0-2cm

Height (m)	Na ⁺	K+	Mg ²⁺	Cl-	NO ₃ ⁻	SO ₄ ²⁻
3.0	0.33	0.07	nd	0.60	0.33	0.08
0.5	0.05	0.04	nd	0.16	0.04	0.09

- DRX/EDS => halite (sea water ... marine fog ...)
- IC => chloride (sea) + some nitrate (ground)

Conclusions

- Rising damp is very significant
- Salts: chloride (sea) + some nitrate (ground)

Key recommendations

- Prevent the ingress of chloride => hardly feasible ...
- \Rightarrow **Prevent rising damp** (prevents also the access of the nitrate):
 - investigate possible contribution of the old fountain
 - damp proof course ?
- Use a plaster that allows drying of the wall (salt transporting)
- Use a paint with good adherence (some surface decay is still expected) ... silicate?

situated between the kettle (artificial lake meant to accumulate water during the high tide) and the river branch

2 - Alhos-Vedros tide-mill

<u>History</u>

- built beginning of the XVIII century
- inactive since 1940, will work as a museum

situated between the kettle (artificial lake meant to accumulate water during the high tide) and the river branch

<u>History</u>

- built beginning of the XVIII century
- inactive since 1940, will work as a museum

Situation

- inside a branch of the Tagus estuary
- less than 10 km from the open sea

<u>History</u>

- built beginning of the XVIII century
- inactive since 1940, will work as a museum

Situation

- inside a branch of the Tagus estuary
- less than 10 km from the open sea

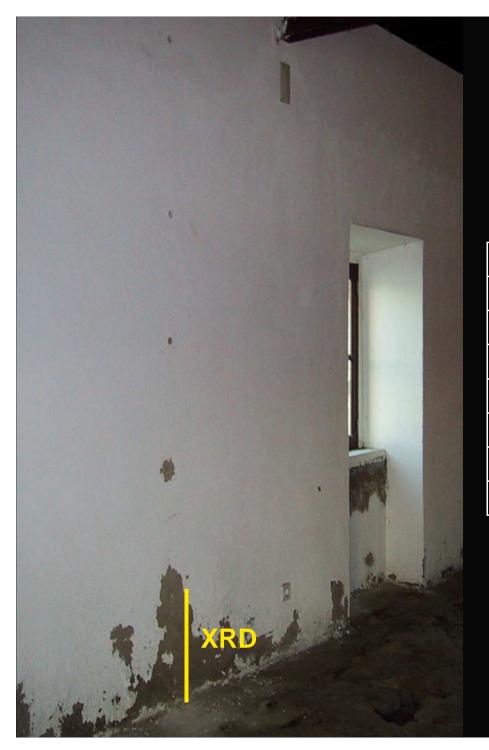
Materials (1999):

- plasters were replaced up to:
 - 2.6m in the NW wall
 - 1.4m in the SW wall
 - 1.0m in the SE wall
 - around NW windows
- traditional artificial hydraulic lime mortar
- common emulsion paint (interior + exterior)

<u>History</u>

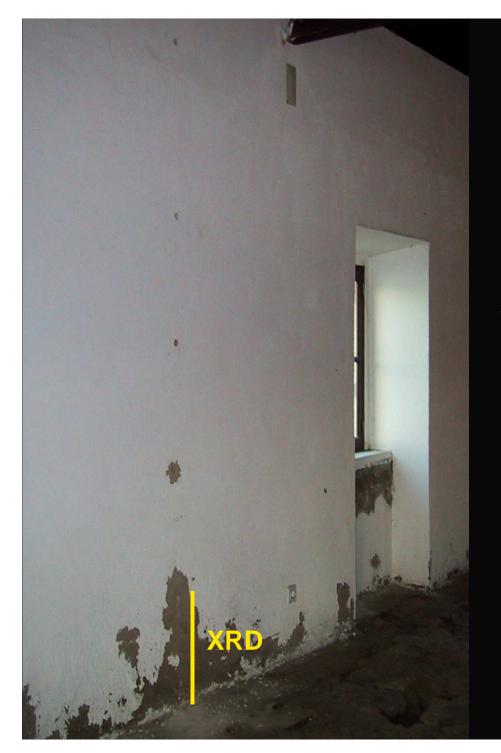
- built beginning of the XVIII century
- inactive since 1940, will work as a museum

Situation


- inside a branch of the Tagus estuary
- less than 10 km from the open sea

Materials (1999):

- plasters were replaced up to:
 - 2.6m in the NW wall
 - 1.4m in the SW wall
 - 1.0m in the SE wall
 - around NW windows
- traditional artificial hydraulic lime mortar
- common emulsion paint

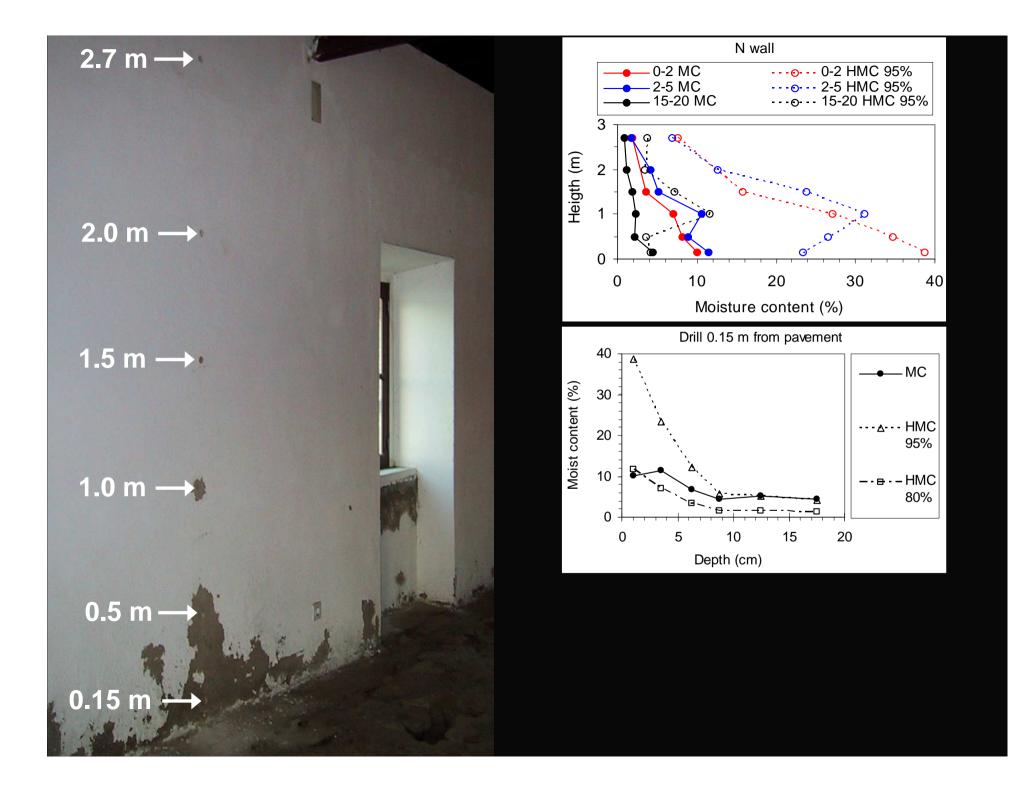

Damage (2002):

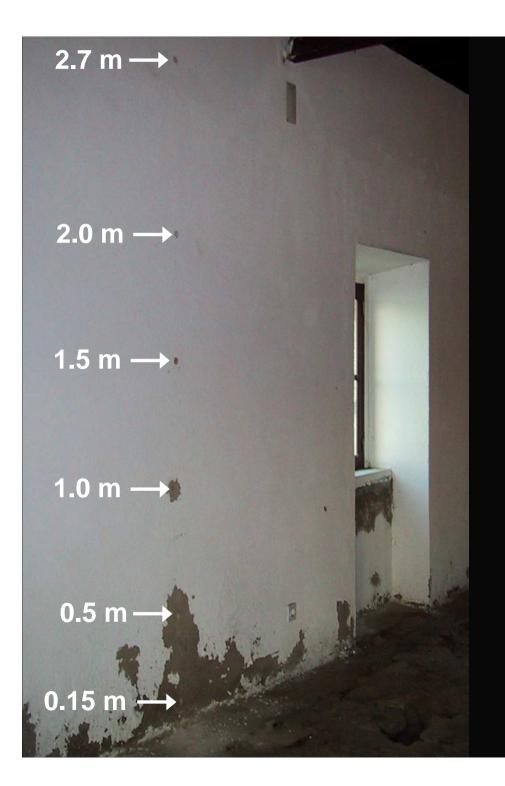
- efflorescence, peeling of the paint, sanding of the plaster in the interior
- affects mostly the (new) plaster

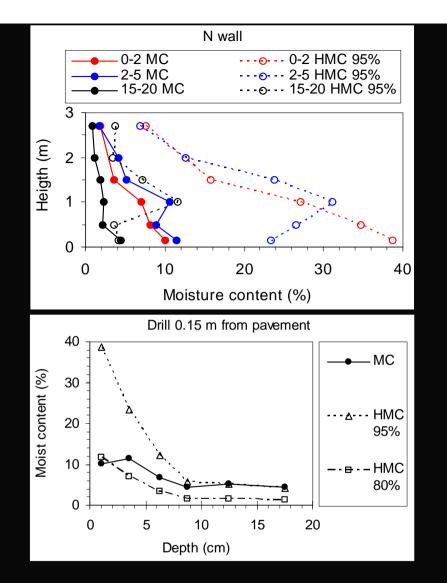


XDR on efflorescence (NW wall)

Termonatrite (Na ₂ CO ₃ .H ₂ O)	+
Gaylussite, Na ₂ Ca(CO ₃)2.5H ₂ O	+
Trona (Na ₂ H(CO ₃)2.2H ₂ O)	+
Halite (NaCl)	+
Calcium hydroxide (Ca(OH)2)	+
Calcite, CaCO ₃	+
Quartz, SiO ₂	++
Feldspars / mica / caulinite	+


Termonatrite $(Na_2CO_3.H_2O)$ Gaylussite, $Na_2Ca(CO_3)2.5H_2O$ Trona $(Na_2H(CO_3)2.2H_2O)$ Halite (NaCl)




Termonatrite $(Na_2CO_3.H_2O)$ Gaylussite, $Na_2Ca(CO_3)2.5H_2O$ Trona $(Na_2H(CO_3)2.2H_2O)$ Halite (NaCl)

- sodium chloride:
 - probably carried by some capillary rising moisture or by salt mist
- efflorescence mainly composed of alkalicarbonate salts:
 - derive probably from the plaster (artificial hydraulic lime...)

the MC is low inside the wall:

=> <u>rising damp is not the main problem</u>, despite the direct contact of the mill foundations with the river water

Where does the water come from?

Where does the water come from? circumstantial evidence ...

Where does the water come from? circumstantial evidence ...

Salt damage:

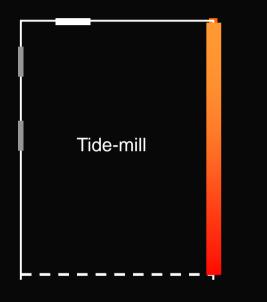
• close to the pavement

Where does the water come from? circumstantial evidence ...

Salt damage:

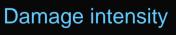
- close to the pavement
- around the NW windows

Where does the water come from? circumstantial evidence ...


Salt damage:

- close to the pavement
- around the NW windows
- more intense on the NW wall than on the SE wall

Damage intensity



Where does the water come from? circumstantial evidence ...

Salt damage:

- close to the pavement
- around the NW windows
- more intense on the NW wall than on the SE wall
- NW wall: increases towards the N corner

Hypothesis: damage occurs on colder surfaces where condensation hazard is higher

Where does the water come from? circumstantial evidence ...

Cold /wet day

Sun suddenly appeared

Air temp raised rapidly

Wet spots start appearing (condensation...)

November 2002

Conclusions

- Rising damp is not very significant
- Moisture source: probably dew point condensation

Conclusions

- Rising damp is not very significant
- Moisture source: probably dew point condensation
- Salts: alkali carbonate + some sodium chloride (sea)
- Damage affects mostly the (new) hydraulic plaster

Conclusions

- Rising damp is not very significant
- Moisture source: probably dew point condensation
- Salts: alkali carbonate + some sodium chloride (sea)
- Damage affects mostly the (new) hydraulic plaster

... the main reason for the observed decay seems to lay in the plaster itself:

Conclusions

- Rising damp is not very significant
- Moisture source: probably dew point condensation
- Salts: alkali carbonate + some sodium chloride (sea)
- Damage affects mostly the (new) hydraulic plaster

... the main reason for the observed decay seems to lay in the plaster itself:

Key recommendations

Conclusions

- Rising damp is not very significant
- Moisture source: probably dew point condensation
- Salts: alkali carbonate + some sodium chloride (sea)
- Damage affects mostly the (new) hydraulic plaster

... the main reason for the observed decay seems to lay in the plaster itself:

Key recommendations

• Prevent the a access of chloride => hardly feasible ...

Conclusions

- Rising damp is not very significant
- Moisture source: probably dew point condensation
- Salts: alkali carbonate + some sodium chloride (sea)
- Damage affects mostly the (new) hydraulic plaster

... the main reason for the observed decay seems to lay in the plaster itself:

Key recommendations

- Prevent the a access of chloride => hardly feasible ...
- ⇒ try test plaster of low alkali content (prevents formation of alkali carbonate salts)

Conclusions

- Rising damp is not very significant
- Moisture source: probably dew point condensation
- Salts: alkali carbonate + some sodium chloride (sea)
- Damage affects mostly the (new) hydraulic plaster

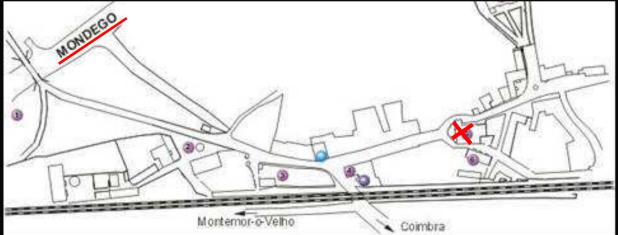
... the main reason for the observed decay seems to lay in the plaster itself:

Key recommendations

- Prevent the a access of chloride => hardly feasible ...
- ⇒ try test plaster of low alkali content (prevents formation of alkali carbonate salts)
- will work as a museum => surface free of damage => salt accumulating plaster

History

- built early XVIII century
- used as sacristy and mortuary chapel



History

- built early XVIII century
- used as sacristy and mortuary chapel

Situation

- next to the Mondego (river)
- 20 km from the Atlantic

<u>History</u>

- built early XVIII century
- used as sacristy and mortuary chapel

Situation

- next to the Mondego (river)
- 20 km from the Atlantic

<u>Materials</u>

- 2001:
 - new lime-sand plasters and renders
 - cement-based adhesion coat

http://emiliotorrao.blogspot.pt/2011/02/montemor-ovelho-pode-conhecer-novas.html

3 - House of Despacho

History

- built early XVIII century
- used as sacristy and mortuary chapel

Situation

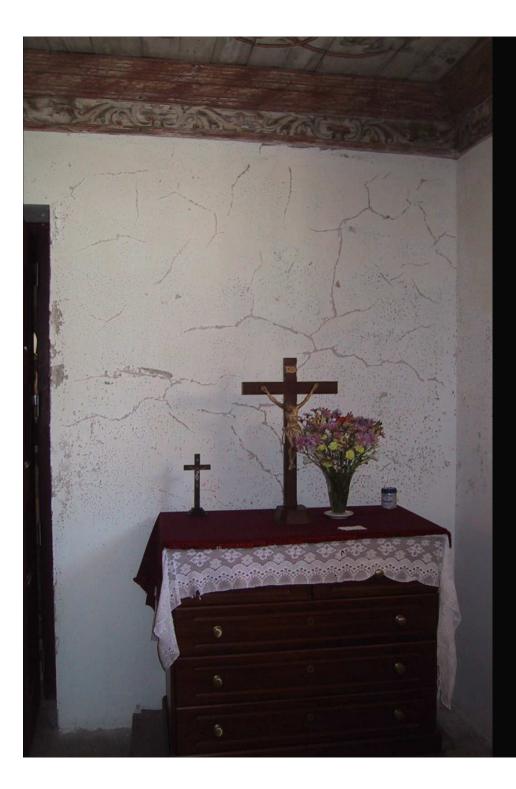
- next to the Mondego (river)
- 20 km from the Atlantic

<u>Materials</u>

- 2001:
 - new lime-sand plasters and renders
 - cement-based adhesion coat a flood (rupture in Mondego dikes) submerged the church up to 2.5 m

http://emiliotorrao.blogspot.pt/2011/02/montemor-ovelho-pode-conhecer-novas.html

<u>History</u>


- built early XVIII century
- used as sacristy and mortuary chapel

Situation

- next to the Mondego (river)
- 20 km from the Atlantic

<u>Materials</u>

- 2001:
 - new lime-sand plasters and renders
 - cement-based adhesion coat
 - a flood (rupture in Mondego dikes) submerged the church up to 2.5 m
- 2003:
 - commercial potassium-silicate paint (with hydrofuge additives) applied at the interior and exterior

<u>History</u>

- built early XVIII century
- used as sacristy and mortuary chapel

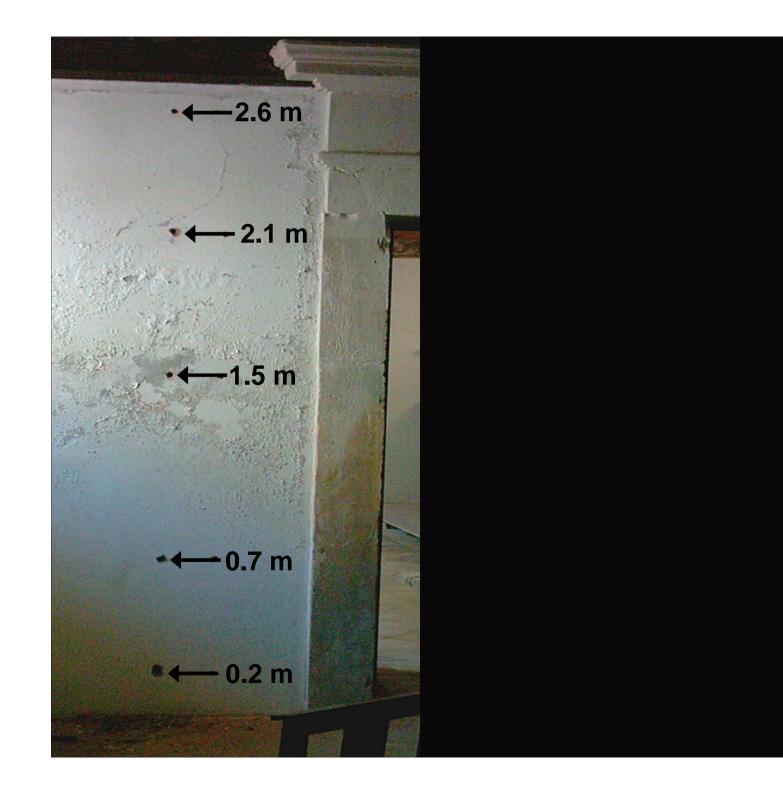
Situation

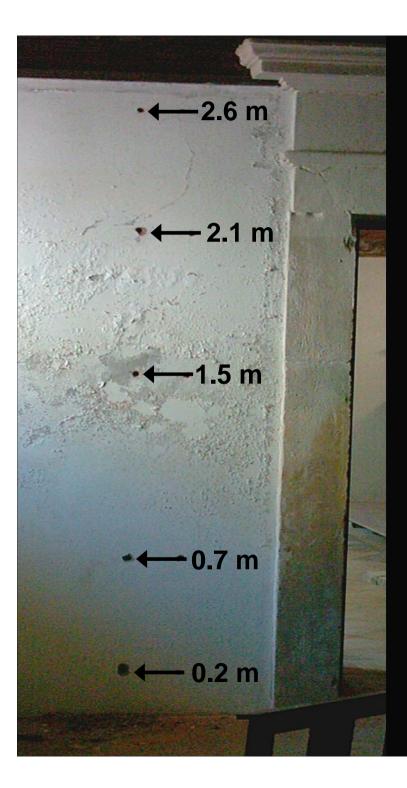
- next to the Mondego (river)
- 20 km from the Atlantic

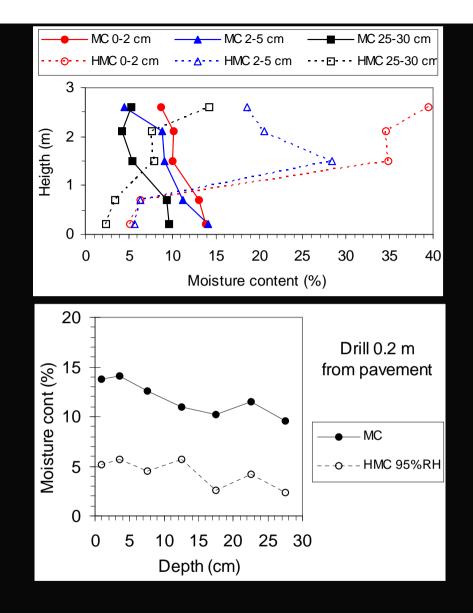
<u>Materials</u>

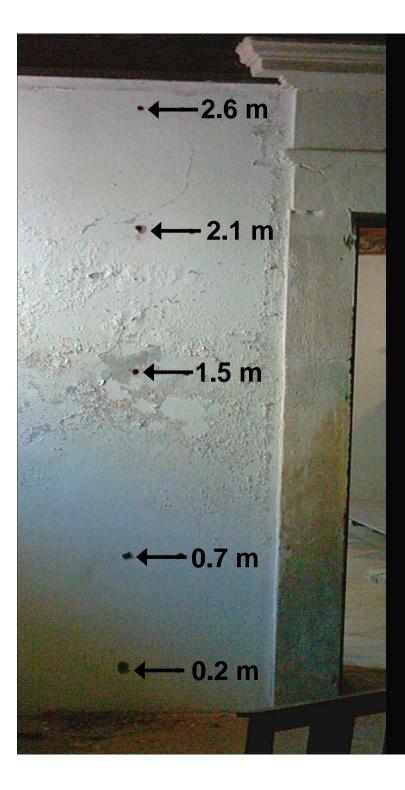
- 2001:
 - new lime-sand plasters and renders
 - cement-based adhesion coat
 - a flood (rupture in Mondego dikes) submerged the church up to 2.5 m
- 2003:
 - commercial potassium-silicate paint (with hydrofuge additives) applied at the interior and exterior

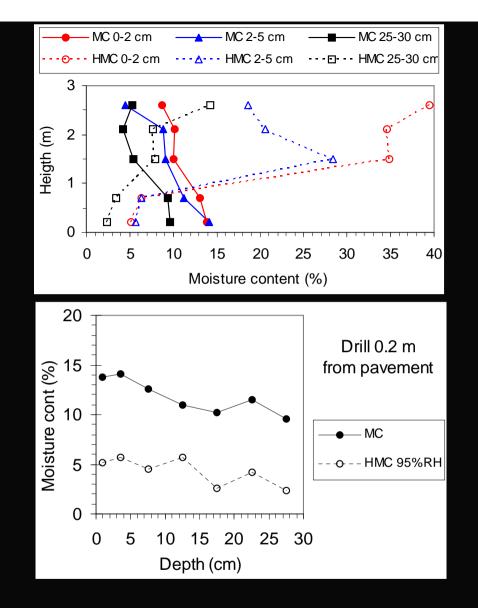
Damage (2003)

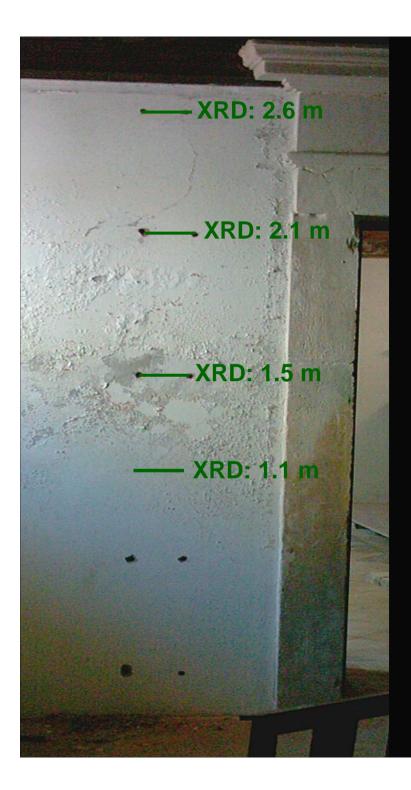

- few months after the works ended...
- affects 50% of the plastered area
- cracking + efflorescence
- affects upper part of walls (1.0/1.5 2.7 m)

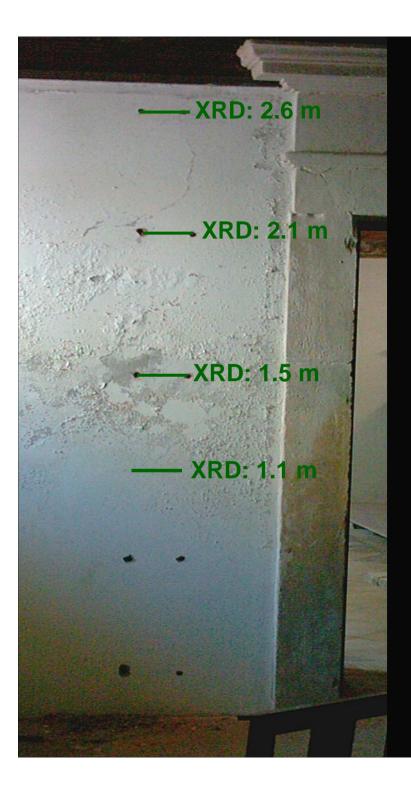

Evolution of damage:

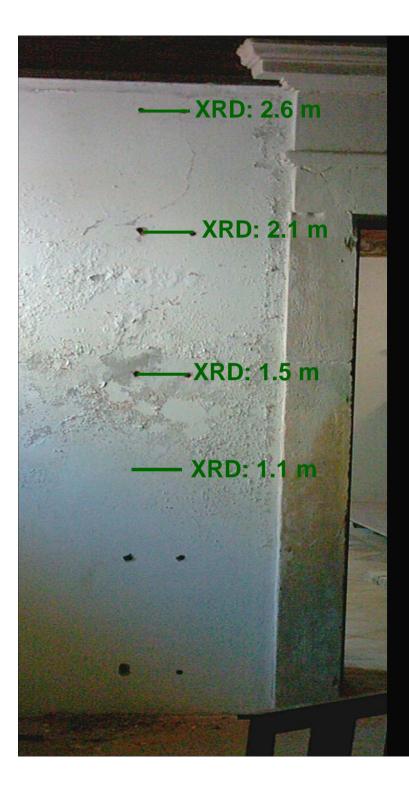

- 1) efflorescence develops at the interface plaster/paint
- 2) the crystals push the paint layer and cause its rupture
- 3) long needle-like crystals appear + sanding of the plaster


plaster cracks = critical points were the degradation first starts and develops faster








Significant amount of moisture exists inside the walls

XDR on efflorescence

Crystalline compounds	Sampling height (m)			
	1.1	1.5	2.1	2.6
Hydrous sodium carbonate, Na ₂ CO ₃ .7H ₂ O	++	+	-	-
Natron, Na ₂ CO ₃ .10H2O	+	++	-	-
Gaylussite, Na ₂ Ca(CO ₃) ₂ .5H ₂ O	-	+	+	++
Quartz, SiO ₂	-	-	vtg	-
Cristobalite, SiO ₂	?	?	+	+
Calcite, CaCO ₃	+	+	++	+/++
Rutile, TiO ₂	+	+	++	++

Hydrous sodium carbonate, Na $_2$ CO $_3$.7H $_2$ O Natron, Na $_2$ CO $_3$.10H2O

Gaylussite, Na₂Ca(CO₃)₂.5H₂O

Conclusions

Conclusions

High moisture content inside the walls

Conclusions

High moisture content inside the walls:

- rising damp?
- accumulation during the flood?

Conclusions

High moisture content inside the walls:

- rising damp?
- accumulation during the flood?

=> repeat MC/HMC measurements => know evolution...

Conclusions

High moisture content inside the walls:

- rising damp?
- accumulation during the flood?

=> repeat MC/HMC measurements => know evolution...

Key recommendations

Conclusions

High moisture content inside the walls:

- rising damp?
- accumulation during the flood?

=> repeat MC/HMC measurements => know evolution...

Key recommendations

• plaster of low alkali content (no cement-based adhesion layer...)

Conclusions

High moisture content inside the walls:

- rising damp?
- accumulation during the flood?

=> repeat MC/HMC measurements => know evolution...

Key recommendations

- plaster of low alkali content (no cement-based adhesion layer...)
- do not use hydrophobic paint
 - hydrophobic surface layer => lower evaporation rate (stage II conditions)
 - subflorescence disrupts the paint layer (rather, let the salt go out...)

- located in Coimbra (20 km from the coast)
- study: ground floor of the cloister gallery
- built in the first half of the XVIII century

- located in Coimbra (20 km from the coast)
- study: ground floor of the cloister gallery
- built in the first half of the XVIII century
- traditional cement plaster + acrylic emulsion paint
- applied in 1987

Damage:

either upper on the walls,
 next to stone elements

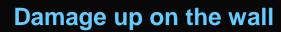
Damage:

- either upper on the walls,
 next to stone elements
- or close to the pavement

XDR on sanded surface material (NE wall)

XDR on sanded surface material (NE wall)

Damage up on the wall


Damage up on the wall

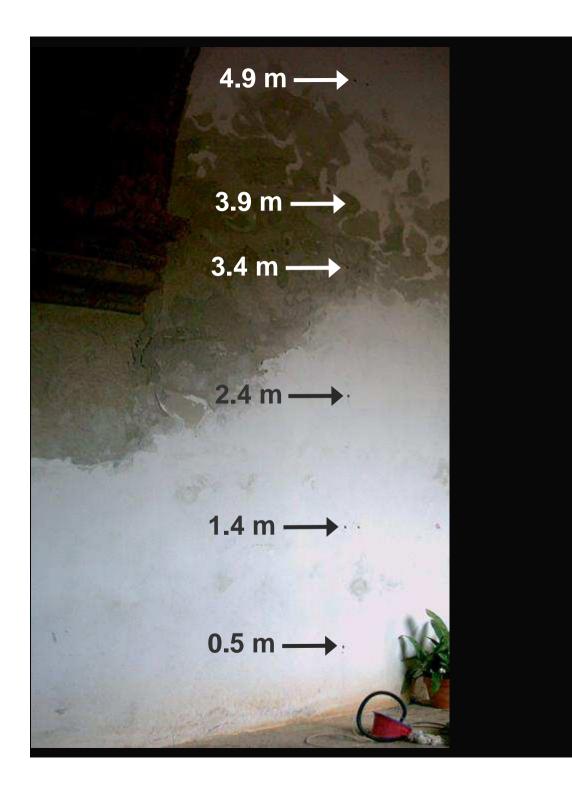
XDR on sanded surface material (NE wall)

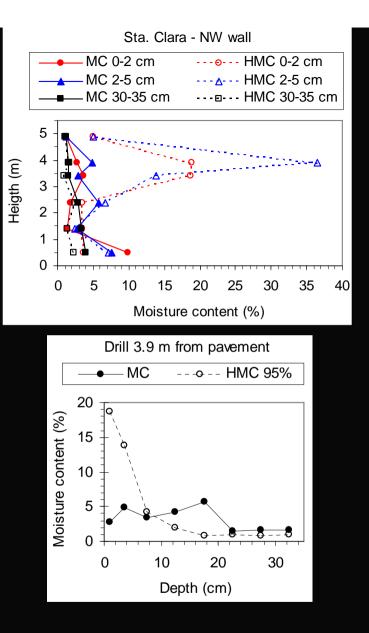
XDR on efflorescence (NW wall)

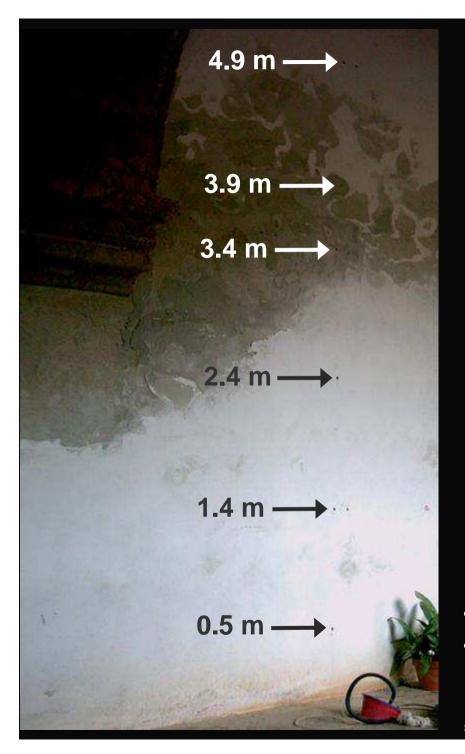
XDR on sanded surface material (NE wall)

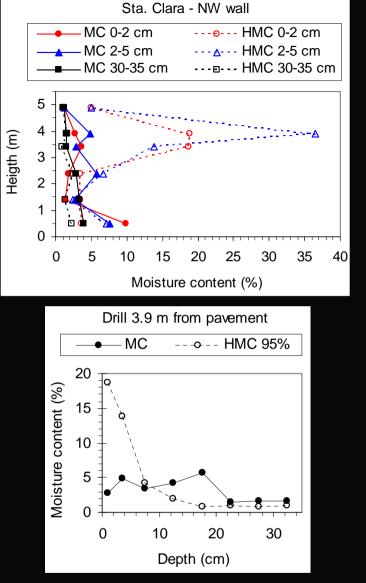
Trona, Na ₃ H(CO3) ₂ .2H ₂ O	?/vtg
Gaylussite, Na ₂ Ca(CO ₃) ₂ .5H ₂ O	+
Niter, KNO ₃	?∕vtg
Calcite, CaCO ₃	+++
Dolomite, CaMg(CO ₃) ₂	+
Quartz, SiO ₂	+

XDR on efflorescence (NW wall)

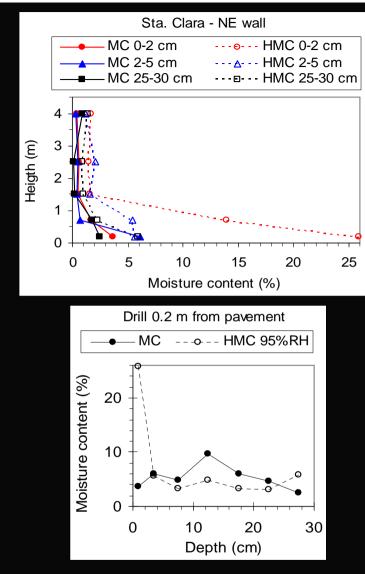

Trona, Na ₃ H(CO3) ₂ .2H ₂ O	++/+++
Gaylussite, Na ₂ Ca(CO ₃) ₂ .5H ₂ O	-
Niter, KNO ₃	-
Calcite, CaCO ₃	++/+++
Dolomite, CaMg(CO ₃) ₂	-
Quartz, SiO ₂	vtg


Damage up on the wall




Trona, Na₃H(CO3)₂.2H₂O Gaylussite, Na₂Ca(CO₃)₂.5H₂O Niter,KNO₃

Trona, Na₃H(CO3)₂.2H₂O



- Rising damp seems limited (< 5% inside)
- In-depth MC/HMC profile at the level of maximum damage => MC decreases towards the interior of the wall (at the deepest points, MC ≈ HMC)
- => superficial source of liquid moisture is likely

- Rising damp seems low also here
- In-depth MC/HMC at the bottom of the wall => MC decreases towards the interior of the wall (at the deepest point, the MC is lower than the HMC)

=> superficial source of liquid moisture is likely also here

February 2004

January 2004

Possible moisture sources

February 2004

January 2004

<u>Possible moisture sources</u>
Soil surface water (cloister garden)?
Hygroscopic water (stone) ?
Condensation (mainly on the stone) ?

Conclusions

Conclusions

Moisture source? superficial source is likely ...

Conclusions

Moisture source? superficial source is likely

• rising damp is low => soil surface water (cloister garden)?

Conclusions

Moisture source? superficial source is likely

- rising damp is low => soil surface water (cloister garden)?
- hygroscopic water (stone) ?
- condensation (mainly on the stone) ?

Conclusions

Moisture source? superficial source is likely ...

- rising damp is low => soil surface water (cloister garden)?
- hygroscopic water (stone) ?
- condensation (mainly on the stone) ?

Salts = carbonate (plaster) + nitrate close to the pavement (some rising damp)

Conclusions

Moisture source? superficial source is likely ...

- rising damp is low => soil surface water (cloister garden)?
- hygroscopic water (stone) ?
- condensation (mainly on the stone) ?

Salts = carbonate (plaster) + nitrate close to the pavement (some rising damp)

Key recommendations

Conclusions

Moisture source? superficial source is likely ...

- rising damp is low => soil surface water (cloister garden)?
- hygroscopic water (stone) ?
- condensation (mainly on the stone) ?

Salts = carbonate (plaster) + nitrate close to the pavement (some rising damp)

Key recommendations

- correct drainage of rain water in the cloister garden
- analyse the stone (hygroscopic features ... salts? => dessalination?)
- plaster of low alkali content

Inspection form

Inspection form

			FICHA DE INS	SPECÇAO DE OB	RA	
NFORMAÇÂ	O GERAL					
Dala e hora da	viaita:		Técnicos presentes		Condições meleorológicas	
Nome do edifici				Verada localidade:		1
Enidade respo	raiveliciono:			Interesse patrimonial (dassilicação):		
Descrição gené	ria:					- 1
Uno (actual e ar	nieriorea):					- 1
 Cospeto en Signacimento 						
 Amperate 	no bera calgados máxicos, portos, etc.					
Volumetria e ori						- 1
- Note jesta						
 Nº de corpor Dimensões 	en plana					
 Nº de place Pédiato 						
Ambiente en sol	aris:					- 1
- Zora comit						
 Zora utara Caraceteica 	Fool Finduntal a gariculares					
Tipologia constr	utva (incluindo reve	almenica)				-
- Fundações						
 Parates Place 						
 Colettos Coleitota 						
Estado geral	Enclaria - Cd	ana:				-
ca constructio:	esterior - Pa	NÚNC:				
	- Va	a:				
	Erubrit.					
	Interior - Pa	ndar: Imenar:				
	- Pa - Te					
Faces de const						-
Seriostalarid	iades relevantes (ch	elas, indira	dica, colegacative sober me	nica, demolitikaa, eis) e	daba.	-
hierveng\$es co	natukan <u>pamadan</u>	creacies	ou prevision (descie que	nelevanteo):		- 1
- 000						
- Objectivos						
- Elements						
- Soluções of						
- Empiricia	eta urador					
Obeneçües						1

FICHA DE INSPECÇÃO DE OBRA

ANVIA A	LIAB
Tipo de di	gradação (lerminologia Carrage Alas).
Semento	alectados (discriminar estado dos revesimentos):
- Facto	da a pomena instas
- Pand	a eorios ou insiona
- Pand	e udendia, cre
- Zora	hondas
- Pair	was Jaca
Tipologia	znatulta e constituição doseiementosaledados.
- Tpe	is siverata, mizza, pirtus
	sino ade impernabilização / encomenci
- Cone	de capitatione na base das president
Dénélo	(% da área lobal doseiementosaledados) e proluncidade (mm) da degadação.
Logiaçã	o dan zonandegradadan
- Face	depetat /depatagio entrella
	imo / éexde) / dóro pio
- 500	th pands Proje Fauna zona.
- Jore	tás o ans émeta?
- Size	raficamente ación de junto a máseica directidad?
- Oter	njio da pasis deputata
História de	anomala-Morajde pecate ga;
- Pine	ina alrak (tipe eduna):
- Cost	inda alcentatica en deservicada legoca do ano?
- Apix	dau?
- Ends	çie da dinar
- 14:00	a torada (ingez parenta, epazita, ec.)
Cohelad	e amostras-Deciro e Merificição das anastes
- Local	nçis (egera - (age)
- Pete	dánh
- Dime	ala
- 500	auto de elemento (gande)
	a) contrine
	iladese resultades
	senjestus adis Faori aco
- 55	
Higólasa	(diagn Caliza).
-	les (condições particulares de exposição, presença de lubagens, elo):

Ь

GENERAL INFORMATION

Inspection

- date / time
- weather conditions
- performed by

Identification of the building

- building name / address / location
- responsible entity / owner
- heritage interest / classification

Use(s) of the building (current and previous)

- Use(s)
- Heating
- Storage of salted goods
- Domestic animals, pigeons, etc.

Building dimensions and orientation

- plan / diagram (indicate North)
- dimensions
- different floors / bodies

Surrounding environment

- coastal / interior
- urban / rural / industrial
- particular features ...

Constructive typology (materials + functions)

- structure
- foundations
- walls (ex: cavity walls? filled with what?)
- doors/windows
- roof
- pavements
- surrounding terrain / pavement impermeable or diverting rain water to the base of the walls?

Water supply / drainage systems location of the pipes + state of conservation

Perceived ventilation

Construction phases and dates

State of conservation envelope, structure, interiors

Events / disasters floods, fires, partial collapses, landslides, demolitions, etc. - dates

Past, present or planned interventions

dates, objectives elements addressed, constructive solutions contractor / restorer

ANOMALIES

Type of degradation

describe (may use some classification, but also describe with your own words + fotos)

Elements affected

facades / internal coverings exterior / interior walls semi-buried walls, basements other...

Typology of the affected elements

type of masonry, plaster/render, paint damp proof courses?

Extension of the damage

area (% of the total area) depth

Degraded areas

disperse spots / extensive degradation ground floor / high floor wall base / top / middle height of the wall next to specific elements exposition of the affected walls (N, S, W, E)

History of the anomaly

who provided this information early signs (type and date) systematic occurrence at certain time of the year? how long after the works? evolution of the damage => several observations or indirect information from users (specify):

- winter / summer
- rain / dry weather

measures taken (cleaning, repairs, etc.)

Sampling

clear identification of the samples purpose (tests to carry out) location (+ foto) depth dimensions thickness of the element (wall) constituent materials

Site tests / quantitative data

RH / air temp / solar radiation (at least qualitatively) percussion: hollow sound => detached layers

Hypothesis (diagnosis)

EU project CHARISMA - ITINERANT COURSE ON STONE CONSERVATION - LNEC, 7-18 May 2012

Case-studies in plastering and rendering mortars. Sampling and testing for salts

Thank you