
 
1 INTRODUCTION 

In many reservoirs, the transport and deposition of 
fine sediments are associated with turbidity cur-
rents events. These currents are generated when 
the sediment-laden river inflow enters a reservoir 
and plunges below the clear quiescent water and 
continues as a dense underflow. Driven by the 
density difference caused by suspended fine sedi-
ments, turbidity currents are capable of transport 
large amounts of sediments over long distances 
and eventually reach the dam. 

Prediction of the evolution of turbidity currents 
is of great interest to many reservoir engineering 
problems. Sediment deposition by turbidity cur-
rents will contribute to reservoir loss of water 
storage capacity, obstruction of the bottom outlets, 
or interfere with the operation of the intake struc-
tures and affect the reservoir ecology. In reservoirs 
where turbidity currents are frequent events, the 
control of sedimentation can be done by venting 
these currents through the opening of the low-
level outlets at the dam (Fan & Morris 1992, 
ICOLD 1999) or by controlling the phenomena us-
ing obstacles placed in the reservoirs (Oehy & 
Schleiss 2007). For the success of these measures, 
turbidity currents characteristics must be known or 
predicted using adequate numerical models.  

Over the last decades, continuing effort has 
been made to develop numerical models for un-

steady turbidity currents simulation. Most of these 
models are based on one and two-dimensional (1D 
and 2D) depth-averaged single layer formulations 
(1D: Choi & García 1995, Sloff 1997, Kostic & 
Parker 2003, Kostic & Parker 2006; 2D: Choi 
1998, Bradford & Katopodes 1999). The depth-
averaged formulation consists of a hyperbolic sys-
tem of partial differential equations derived by 
Parker et al. (1986) by averaging the vertical struc-
ture of the flow over the depth.  

An important concern for numerical methods 
when solving hyperbolic equations is the ability to 
deal with discontinuities in the flow variables. In 
particular, to simulate turbidity currents the model 
must be able not only to predict the flow hydrody-
namics, erosion and deposition but also to deal 
with the propagation of a front and the possible 
occurrence of internal hydraulic jumps. 

Godunov-type schemes are especially suitable 
for capturing discontinuities in the flow. Several 
researchers have applied successfully the HLL 
(Harten, Lax and van Leer) approximated Rie-
mann Solver for the Euler equations (Toro et al. 
1994) and for the shallow water equations (Frac-
carollo & Toro 1995, Fraccarollo et al. 2003, Cao 
et al. 2004). The robustness and simplicity of this 
solver provided the motivation for its application 
to the simulation of turbidity currents.  

In this paper, the HLLC Riemann solver pro-
posed by Toro et al. (1994) has been implemented 
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in a second-order total variation diminishing 
method. The numerical model results were veri-
fied using available laboratory data. 

This paper is organized as follows: In section 2 
the governing equations of the flow are presented 
and in section 3 the proposed numerical scheme is 
described. In section 4 the computational scheme 
is applied to the simulation of turbidity currents 
and the results are compared with laboratory data. 
Finally, conclusions are drawn in section 5. 

2 GOVERNING EQUATIONS  

The spatial development of an unsteady, one-
dimensional, turbidity current flowing in deep 
ambient fluid (Fig. 1) can be described by the fol-
lowing set of layer-averaged partial differential 
equations derived by Parker et al. (1986): 
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where h  = current thickness, U  = layer-averaged 
velocity, C  = layer-averaged suspended sediment 
concentration, ( ) ρρ−ρ= sR , where sρ  = sedi-
ment density and ρ  = density of the ambient fluid, 
S = bottom slope, g  = acceleration due to gravity, 

*u  = shear velocity, wE  = ambient fluid entrain-
ment coefficient, sE  = sediment entrainment coef-
ficient, sw  = particle fall velocity, and bc  = near-
bed sediment concentration.  

 

 
 
Figure 1. Definition sketch 

Equations (1) and (3) are the fluid and sediment 
mass continuity equations and Equation (2) the 
momentum equation. In the continuity equation 
the term UEw  represents the rate of ambient fluid 
entrainment into the current. The term 

( )bss cEw −  is the net entrainment flux from the 
bed to the current due to erosion and deposition. 
The dependent variables are h , U  and C . 

The bed-sediment conservation equation is 

( ) ( )sbs Ecw
t
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where z  = bed elevation and λ  = porosity of the 
bed. 

In order to solve the governing equations given 
above, closure relationships for the fluid and sedi-
ment entrainment coefficients, shear velocity and 
concentration near the bed must be specified. 
Based on experimental data, Parker et al. (1987) 
obtained the following expression for the ambient 
fluid entrainment coefficient: 
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where 2UgRhCRi =  is the bulk Richardson 
number. The sediment entrainment coefficient is 
determined from the empirical relationship pro-
posed by Parker et al. (1987): 
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and pRe  denotes the particle Reynolds number 
( ν= 5.03

p )gRD(Re  where D = particle diameter). 
In the experiments conducted by Parker et al. 

(1987), a simple relation between near-bed and 
layer-averaged concentrations was found:  

2
C
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The relation for shear velocity is 
2

D
2
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where DC  is a coefficient of bed friction. A typi-
cal range of CD values is 0.002-0.1 including ex-
perimental and field data (Parker et al. 1987). 

3 NUMERICAL MODEL  

The governing equations are of hyperbolic type 
(Bradford et al. 1997), admitting shocks and dis-
continuities. The one-dimensional equations in the 
conservative form can be written as: 
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where U  = vector of conservative variables, 
F  = flux vector and Q  = source term vector given 
by 
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A cell-centered finite volume method is formu-

lated for Eq. (10). The computational domain 
[0,L] is divided into N cells and the points ix  are 
the centres of the cells. An explicit conservative 
discretization form of Eq. (10) can be written as 
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where n
iU = average of U  in cell i  at time level 

n , x∆ = width of the cell i , t∆ = time step, n
2/1i+F , 

n
2/1i−F = fluxes at cell interfaces and niQ = average 

of Q  in cell i . 
In Godunov-type schemes the numerical flux 

n
2/1i+F  is computed from the exact or approximate 

solution of a Riemann problem at the interface 
2/1i + . 

In the present model, the HLLC (Harten, Lax 
and van Leer and Contact surface) approximate 
Riemann solver (Toro et al. 1994 and Toro 1999) 
is adopted to calculate the flux vector at each cell 
interface. This solver assumes a simplified wave 
configuration for the solution of the Riemann 
problem consisting of three waves of speed SL, SR 
and S* separating four constant states (see Fig. 2). 
 
 

 
 
 
 
 

 

 
Figure 2. Wave structure for the HLLC Riemann solver  

 
The HLLC Riemann solver is given by 
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and ,*R,LS  can be estimated by the following equa-

tions proposed by Fraccarollo and Toro (1995) 
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The numerical scheme previously described is 
first-order accurate in space and time. An exten-
sion to second-order accuracy is achieved with the 
TVD version of the second-order accurate 
weighted average flux (WAF) method given by 
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where xtSc kk ∆∆= = Courant number associated 
to the wave speed kS , k

2/1i +ϕ = WAF limiter func-
tion and k
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1k

2/1i
k

2/1i FFF +
+

++ −=∆ . 
The source term n

iQ  is evaluated using the val-
ues at cell center i . For the calculation of the bed 
slope term at the cell center i , the bed elevations 
at the adjacent cells are used. 

The bed evolution is computed from Eq. (4) 
explicitly 
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where iz  = cell average bed elevation. 
For the application of the numerical model, the 

flow variables at the boundaries 0x =  and Lx =  
must be known. Boundary conditions were im-
plemented considering two fictitious cells outside 
the computational domain. The number and type 
of boundary conditions were defined based on the 
theory of characteristics (Hirsch, 1990). For a hy-
perbolic system of equations, the number of speci-
fied boundary conditions is the number of charac-
teristics that propagate into the flow domain. The 
additional required information at the boundaries 
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was obtained through numerical extrapolation 
from the interior cells. 

The propagation of a turbidity current poses the 
problem analogous to that of a surge propagation 
over an initial dry bed. In case of a turbidity cur-
rent, the initial bed is actually covered with ambi-
ent fluid but from a numerical point of view the 
bed is dry. If a dry bed occurs, then no shock ex-
ists and the wave speeds must be estimated by an-
other approach. For the right dry bed case (0hL >  
and 0hR = ) the wave speeds are: 

LLL aUS −=  (18a) 

LLR a2US +=  (18b) 

R
* SS =  (18c) 

and for the left dry bed ( 0hR >  and 0hL = ) the 
wave speeds are calculate by 
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For the application of the dry bed methodology, 
the value of the tolerance ε must be defined in or-
der to differentiate between dry and wet cells, i.e. 
a wet cell will be considered when ε>h . 

Finally, since the numerical scheme is explicit, 
the time step is restricted by a Courant-Friedrichs 
Lewy (CFL) type condition 
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where Cr = Courant number. 

4 APPLICATIONS OF THE MODEL  

In this section the numerical model results are 
compared with data from laboratory experiments 
obtained by Alves (2008). Essentially, the experi-
ments were conducted to investigate the character-
istics of plunging turbidity currents in reservoirs. 
Furthermore, depositional records of turbidity cur-
rents obtained by Oehy (2003) are used to evaluate 
the performance of the numerical model.  

4.1 Description of the laboratory experiments 

Alves (2008) conducted a laboratory study of 
plunging turbidity currents in an experimental fa-
cility located at LNEC. The channel is 0.30 m 
wide, 16.45 m long and 0.75 m deep (maximum). 
The channel bottom profile was designed with a 

special configuration to make it possible to simu-
late plunging turbidity currents in reservoirs 
(Fig. 3). The sediment used in the experiments 
was silica flour with a mean diameter of 20 µm 
and a density of 2650 kg/m3. Velocity profiles 
were obtained in seven sections by using an Ultra-
sound Velocity Profiling (UVP) system. Sus-
pended sediment concentration profiles were ob-
tained at two measuring stations by the filtration 
of siphoned samples collected at different heights 
above the bed. The results of this laboratory study 
are also reported in Alves et al. (2008). 

 
 
 
 
 
 
 
 

Figure 3. Schematic of the experimental channel (Alves, 
2008) 

Oehy (2003) performed measurements of the 
evolution of the sediment layer thickness along the 
channel due to turbidity currents. The experiments 
were conducted in a multipurpose flume 0.27 m 
wide, 8.55 m long and 0.9 m deep. The channel 
had a bottom slope of 0.0464. The turbidity cur-
rents were simulated by the sudden opening of a 
sluice gate between the mixing tank and the chan-
nel. The suspended material used was a fine 
ground polymer with a density of 1135 kg/m3 and 
a mean diameter of 90 µm. Velocity profiles were 
measured with a UVP device in four sections of 
the flow. The evolution of the sediment deposits 
thickness was measured with a special device 
based on the relation between the electrical resis-
tance of a layer of particles and its thickness 
(Oehy 2003 and Oehy & Schleiss 2007). 

Among the several experiments conducted by 
Alves (2008) and Oehy (2003), seven were se-
lected for numerical simulation. The initial condi-
tions for selected experiments are given in Ta-
ble 1. The inlet Richardson number, defined as 

2
000 U/hgRCRi = , was less than unity, i.e., the 

generated turbidity currents were supercritical. 
Also, the Reynolds numbers were high enough to 
ensure turbulent flows. 

 
Table 1. Inlet conditions of selected experiments   

Author Exp. 
No. 

h0 
(m) 

U0 
(m/s) 

C0 

(-) 
B0×10-6 
(m3/s3) 

S1.15 0.036 0.121 0.00224 158.2 
S1.16 0.036 0.159 0.01250 1158.9 
S1.19 0.036 0.097 0.00644 364.5 

Alves 
(2008) 

S1.20 0.036 0.148 0.00920 793.4 
A04 0.045 0.069 0.02066 85.5 
A06 0.045 0.070 0.02610 109.5 

Oehy 
(2003) 

A07 0.045 0.041 0.03448 84.3 



For the numerical computations a spatial step 
∆x = 0.05 m and a Courant number 98.0Cr =  are 
used. The values of other input parameters like the 
tolerance ε for the application of the dry be meth-
odology, the bed friction coefficient, DC , and the 
relation Ccb  are listed in Table 2. The experi-
ments used sediments with an almost uniform 
grain size distribution. The particle fall velocity 
( sw ) was determined by the Stokes law consider-
ing the particles mean diameter. 

 
Table 2. Values of the input parameters used in the numeri-
cal simulations  
Author Exp. 

No. 
x∆  

(m) 
Cr 
(-) 

ε  
(m) 

DC  
(-) 

Ccb
(-) 

S1.15 0.02 1.5 
S1.16 0.02 1.8 
S1.19 0.02 1.9 

Alves 
(2008) 

S1.20 

0.05 0.98 10-3 

0.02 1.9 
A04 0.01 1.3 
A06 0.01 1.3 

Oehy 
(2003) 

A07 
0.05 0.98 5×10-3 

0.015 1.8 
 

4.2 Results of numerical simulations and 
comparisons with laboratory experiments  

An example of numerical results obtained for 
Alves (2008) experiments, showing time-
dependent profiles of current height, z+h, depth-
averaged velocity, U, and depth-averaged sus-
pended sediment concentration, C, in the longitu-
dinal direction, is given in Fig. 4 for experiment 
S1.16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Numerical simulation of a turbidity current propa-
gation along the flume (experiment S1.16) 

During the progression of the turbidity current, 
a strong decrease of the suspended sediment con-
centration and an increase of flow thickness occur 
primarily due to water entrainment along the 
flume. Furthermore, the currents are also deposit-
ing sediments and so they are slowly decelerating. 

The front of a turbidity current is characterized 
by strong gradients in height, velocity and concen-
tration, since these variables are zero downstream. 
The computational results yields steep fronts with-
out numerical oscillations. 

The comparison between the numerical results 
and the observed values of current thickness, 
depth-averaged velocity, suspended sediment con-
centration and Richardson number are presented 
in Fig. 5 and Fig. 6 for experiments S1.16 and 
S1.15, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Comparison of numerical results with laboratory 
measurements (experiment S1.16) 
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Figure 6. Comparison of numerical results with laboratory 
measurements (experiment S1.15) 

In general, the agreement between computed 
and observed values is good, except immediately 
downstream the abrupt slope transition where the 
model underpredicts the currents thickness and 
overpredicts its suspended sediment concentra-
tion. This is most likely due to the intense mixing 
process between the underflow and the ambient 
fluid in the plunging region. In the experiments 
reported in Alves (2008), the plunging occurs im-
mediately after the slope break due to the sudden 
change in the flow depth. In this region, high val-
ues of the mixing coefficient of ambient fluid into 
the underflow were obtained, which was attributed 
to the effect of the steepness of the channel bot-
tom on the mixing process. 

In the channel slope transition, although an in-
crease of the current thickness was observed no 
change in the flow regime could be confirmed. For 
the currents where suspended sediment concentra-
tion profiles were measured, the Richardson num-
ber, Ri, remained less than the unity (Fig. 5 and 
Fig. 6). 

Fig. 7 shows a comparison of the predicted and 
measured front velocities (fU ). In the same figure 
values for Oehy experiments are also included. 
From this figure it is seen that the model overpre-
dicts the front propagation velocity. This result 
may be related with the fact that the majority of 
the laboratory experiments are conducted in rela-
tively shallow waters and not in a deep ambient 
fluid as assumed in depth-averaged model formu-
lation. Furthermore, the measured velocity profiles 
exhibit a reverse flow produced by the shear stress 
at the interface of the turbidity current and the 
ambient fluid (Oehy 2003 and Alves 2008). This 
reverse flow may act to increase the interfacial 
friction thus decreasing the current front velocity 
observed in the experiments.  

A similar tendency to over estimate the current 
front velocity was observed by other authors that 
used the layer-averaged formulation but different 
numerical schemes (Choi & García 1995, Sloff 
1997 and Bradford & Katopodes 1999).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Comparison of numerical results with laboratory 
measurements (experiment S1.15) 

To verify the numerical model ability to predict 
bed level evolution, a comparison of the numerical 
and measured bed deposition profiles for three ex-
periments conducted by Oehy (2003) is presented 
in Fig. 8. As the current moves downstream, the 
suspended sediment settles out of the turbidity 
current and deposits along the channel. The 
agreement between numerical results and meas-
urements is very good. In case of experiment A07, 
there is a disagreement between calculations and 
measurements of the bed levels in the initial part 
of the channel. These differences seem to be at-
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tributable to the influence of the inlet conditions 
in the laboratory experiments and not to any short-
coming of the numerical scheme. Indeed, as re-
ported by Oehy (2003) and Oehy & Schleiss 
(2007), near the channel inlet the intense mixing 
and high velocity of the current tended to make 
the sedimentation pattern irregular in some ex-
periments. Downstream of this region the bed lev-
els are well reproduced by the numerical model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Comparison of computed and measured sediment 
deposition by turbidity currents along the flume (experi-
ments A04, A06 and A07) 

5 CONCLUSIONS  

A numerical model for one-dimensional turbidity 
currents driven by uniform sediments is proposed 
in this paper. The model is based on the layer-
averaged formulation which consists of a system 
of hyperbolic partial differential equations. To 

solve the governing equations, a finite volume 
method was adopted. The HLLC Riemann solver 
has been implemented in the TVD version of the 
second-order WAF method.  

The numerical model has been applied to the 
simulation of turbidity currents based on the labo-
ratory experiments conducted by Alves (2008) and 
Oehy (2003). The model is able to simulate the 
current’s hydrodynamics and deposition. The 
computed profiles of the current thickness, layer-
averaged velocity, layer-averaged suspended 
sediment concentrations and bed deposits show 
good agreement with the experimental data. The 
computed velocity of the turbidity current front is 
generally overestimated which is attributable to 
the limitations of single layer formulation and to 
relatively small scale laboratory facilities. Future 
research will include extensions to two-
dimensional flows and the transport of nonuni-
form sediments. 
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