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ABSTRACT:

In Portugal, updating municipal plans (1:10 00Ojeiguired every ten years. High spatial resolutibagery has shown its potential
for detailed urban land cover mapping at largeescaowever, shadows are a major problem in thoagés and especially in the
case of urban environments. The purpose of thidystito develop a less time consuming and leseresipe alternative approach to
the traditional geographic data extraction for noipal plans production. A hierarchical object otesh classification method, that
combines a multitemporal data set of high resofusiatellite imagery and Light Detection And RangibidPAR) data, is presented
for the Municipality of Lisbon. A histogram threddimg method and a Spectral Shape Index (SSI) miteally applied to
discriminate shadowed from non-shadowed objectsguai2007 QuickBird image. These non-shadowed abpaet then divided
into vegetated and non-vegetated objects using em&lized Difference Vegetation Index (NDVI). Thrdug rule-based
classification using the height information fronDIAR data, vegetated objects are classified intostpad, shrubs and trees while
non-vegetated objects are distinguished into lowvtagh features. Low features are then separatedbare soil and transport units,
again using a NDVI, while high features are clasdifis buildings and high crossroads using theesbthe objects (density). The
2007 shadowed objects are classified based orptretral and spatial information of a 2005 QuickBiréhge, where shadows are in
different directions. The developed methodologydpieed results with an overall accuracy of 87%. Missifications among
vegetated features are due to the fact that thevhBifi not express the height for permeable featumbile among non-vegetated
features are due to temporal discrepancies bettveeDTM and the DSM, to different satellite azimmtin the 2005 and 2007
images and to unsuitable contextual rules.

1. INTRODUCTION other impervious surfaces such as concrete parkotg,
sidewalks and asphalt roadways, vegetated areasvareht
The extraction of large scale geographical inforomatfrom  |and. Even though airborne and spaceborne imagerg heen
very high resolution satellite images is an impuoirteesearch  conventionally used for map compilation in updatpgcesses,
topic in urban studies, especially in areas withelavated rate the casting shadows that dominate in the scenasiradgover
of urban changes, as a way to update the geogedphicdense urban areas and the leaning of buildings ather
information. One of the main Portuguese instrumeats elevated features due to the geometry of acquisiéind the
territorial management is the Municipal Directoaf|(PDM- heterogeneity of the spectral information can cassene
Master Plan) which has to be updated every tersyewever, inevitable problems (Vet al., 2004).
in municipalities with great urban demands, suclhasLisbon
municipality, such periodicity is not suitable. BeePDM’s are  |ight Detection And Ranging (LIDAR) is a relativelyew
produced at scales 1: 10 000 and 1:25 000, respagtifor  remote sensing technique that is revolutionizingographic
urban and rural municipalities. terrain mapping (Alexandeet al., 2009). The potential of
surface-cover height extracted from multiple-retuflDAR data
The analysis of urban areas demands for a highiaspat for urban areas analysis and building extractioras heen
resolution. Traditionally, the extraction of the quired  shown by many authors (Vet al., 2004; Sohn and Dowman,
information at national mapping agencies has bemfopned  2007; Alexandert al., 2009; Cheret al., 2009; Zhouet al.,
based on the visual interpretation of extremelhhhigsolution  2009). Priestnall and Glover (1998) stated that the
aerial photos, which is an expensive and time a®imsy incorporation of building heights offers importarextra
process. Alternatively, high satellite resolutiatedlite imagery  information over and above that offered by optisahsors
can play a role in the capture and maintenancemdgraphic  alone. In fact, Chenet al. (2009) concluded that the
information. However, the information that can beracted combination of high spatial resolution imagery, IsuEs the
from these images is useful to capture medium sealpping  QuickBird imagery, and LiDAR data can improve urban
features, being difficult to interpret most of #eatures that are features classification accuracy, since the forpmevides ample
of greatest interest in the update of large scata (Hollandet  spectral and textural information, while the lattdfers good

al., 2006). In what concerns the PDM’s updating, thest  geometry for urban core building delineation.
relevant features are, in order of importance, thupl areas,
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The aim of the research described in this study examine the
potential of high resolution satellite imagery terite a sub-
product with less detailed thematic and geograptfarmation
but with a higher temporal resolution. It is exgecthat this
more general level of information should be ablguidil the
need to detect, more regularly, significant charigdeatures in
urban environments. To achieve this, a multi-soameé multi-
temporal dataset, including QuickBird imagery andAR
data, is used to develop an object oriented claatdn method
to produce updated thematic cartography for mualcip
activities.

This manuscript is organized into the followingefigections.
Section 2 presents an overview and referenceshier studies
related with the urban features extraction fromhhigsolution
imagery and LiDAR data. In section 3, we describe thse
study area, the characteristics of the datasettl@doftware
used in this study. Section 4 is concerned wittcidleing the
developed methodology. The next section, sectiodeScribes
and discusses the results of this research. Fjnallgection 6
some conclusions are drawn.

2. HIGH RESOLUTION REMOTE SENSING OF
URBAN AREAS

The availability of images acquired by the currgeneration of
high spatial resolution satellite sensors has dmuted for new
applications, especially for detailed urban areapsmat large
scales. Even though their spatial resolution emsakilee

identification of urban and sub-urban objects, ¢hiesages are
difficulty to classify on a pixel-by-pixel basis duo their high
level of information (Van der Sanda al., 2003). Images of
urban areas contain a complex spatial set of sghctfistinct

land feature types, which require important spashantic
information for their classification. In these cssebject-

oriented image classification algorithms are recemded

because the information necessary to interpretethimsiges is
represented by image objects and their mutual ioekstips

(Gamanyeet al., 2007).

Another limitation on the use of high spatial regmn images
is related to the existence of shadows cast byatddvurban
objects, particularly buildings. These shaded aerasusually
left unclassified or simply classified as shadows.g(
Shackelford and Davis, 2003), resulting in sigaifit loss of
land features information. One possible approachviercome
this problem is to use spatial information, suchadgcency
relations, for the classification of shaded aregashis kind of
images (e.g., Yuan and Bauer, 2006; Zhou and Tro98R
Object-oriented classification algorithms, that sider not only
the spectral information but also several othergenabject
features, such as shape, texture and spatial apmay be used
to improve the classification in urban areas (Benal., 2004;
Zhou and Troy, 2008). Zhoet al. (2009) used both the spatial
relations to neighbouring objects and the Normdlize
Difference Vegetation Index (NDVI), to distinguisHow
shadows” into grass and pavement and “high shadadms’
trees and buildings. Alternatively, shadows maylassified by
replacing the shadowed pixels by non-shaded pofelse same
region from another image acquired at a differdntet as
proposed by Zhost al. (2009).

Complementarily, altimetry data from LIDAR may betfel in
the discrimination of image features of the sameernal at
different heights, such as concrete buildings amativacant

land in urban areas (Madhok and Landgrebe, 199Mmb@and
Houshmand, 2002; Chegt al., 2009; Zhouet al., 2009).
However, LIDAR data itself is insufficient to diseinate
between different features with the same heighthsas
buildings and trees (Vat al., 2004). In such cases, spectral
indices, such as the NDVI, can be used to firstrdignate
between vegetation and impervious surface and #tem low
level of segmentation, the LIDAR data can be used to
discriminate among features with different heighfs an
example, using the height information obtained ftbmsurface
height model, Cheret al. (2009) were able to discriminate
artificial features into crossroads, high buildingsd low
buildings, while Zhouet al. (2009) separated impervious
surfaces into buildings and pavements.

3. STUDY AREA AND MATERIALS
3.1 Study area

The study area, located within the Lisbon MunidigalFigure
1), has a square shape with an area of approxinaf ha
(approximately 2.4 km x 2.4 km). This site was @robecause
it contains the main features of interest for theniipality
(buildings, other impervious surfaces, vegetatedasrand
vacant land) and also because LIiDAR data were dleailtor
the area (LIDAR data extent is smaller than the akshe
municipality of Lisbon). The west part of the studyea is
dominated by a dense urban area with a variety uilfling
types and different kinds of transport units (rqaddway and
associated land). The east part, although it @omtaome
scattered building areas and roads with differentths,
comprises a wooded area in the North, some vegetatas,
mainly belonging to a golf course, some shrub and/o
herbaceous vegetation and bare soil. Water featuresalso
present in the study area (within the golf coutsa) their area
is insignificant when compared to the total areahs study
site. Variations in the terrain are found in thedst site, with
altitudes ranging from 25 to 110 metres.

3.2 Dataand software

The satellite data consist of two pan-sharpenedckBiid
image dated 13 April 2005 and 11 March 2007, witspatial
resolution of 0.6 m. The sun azimuth and elevatibthe 2005
image are 149°.6 and 57°.3, respectively, while tfax 2007
image those values are 161°.4 and 46°.0, respbctivdl
images have been orthorectified with sub-pixel ety using
Rational Polynomial Coefficients (RPCs) with 29 GCP’sl an
validated with 22 checkpoints. For orthorectificati a Digital
Terrain Model (DTM) was generated from the 1998
municipality vector cartographic map at scale 10D @vith a
spatial resolution of 0.5 m. A 2006 LiDAR Digital Sace
Model (DSM) with a 1-meter spatial resolution wasyided by
LOGICA, covering only partially the extent of the nicipality
of Lisbon. Elevation and intensity of the first atabt pulse
returns from a TopoSys Il 83 kHz LiDAR instrumertwn on

a helicopter, were recorded for each laser pulgh,am average
measurement density of 20 points pér fthe provided DSM
was produced using the last pulse returns, meathagonly
data from the surface that was last hit by therlasdse was
considered. In the case of buildings or other immable
surfaces, the first and last returns will yield tlsame
information. A surface cover height model (nDSM) swa
generated by subtracting the DTM from the DSM, ¢éaused as
ancillary data in the classification procesSrthorectified



photographs acquired on 16 August 2007 were praviethe
Portuguese Geographical Institute (IGP) and useambliect the
reference data used for the accuracy assessmethie ahap.
These images have four spectral bands in the ghen, red
and infrared wavelengths and 0.5 m spatial resoiuthll data
was converted to the PT-TMO6/ETRS89 coordinate systed
the vertical datum of the DSM and the DTM is theregaaph
of Cascais. The Definiens Professional 5.0 softwar® used to
conduct the object-oriented images analysis.
orthorectification was undertaken in the PCl Geoosa9.1

building and bare soil were discriminated. As shesi@ould

not be entirely recovered due to the acquisitioonggtry of the
2005 image, the common shadows between 2005 an@d 200
were classified using contextual rules.

4.1 Image segmentation

Image segmentation is the process of dividing aagerin non-

Imagegverlapping parts in the image space (Schiewe, R00Re

Definiens Professional 5.0 software provides séveossible

(OrthoEngine) since Definiens does not support géhosimage segmentation algorithms (Definiens, 2006his study

capabilities.
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Figure 1. Study area (grey square): an urbaniareee
Municipality of Lisbon, Portugal

4. METHODOLOGY

A hierarquical object-based procedure was developethssify
a 2007 QuickBird image into seven classes (tregapshgrass,
buildings, transport units, bare soil and watehe Bataset used
to implement this procedure integrates a multiterapset of
QuickBird images and LiDAR elevation data. The hiehéral
information extraction process was made up of thmem steps.
First, the dark objects (water and shadows) anddzok object
were separated. Then, the non-dark objects wessifitad using
the 2007 QuickBird image. Finally, the dark objeetsre
classified using the 2005 QuickBird image. In both tioe
classifications steps an identical classificatiggpraach was
adopted. First, vegetation and artificial featureme
differentiated. Underneath vegetation class, graksub and
tree were extracted, while under the artificial sslaroad,

the multi-resolution segmentation was adopted. Btgerithm

requires several inputs, such the scale paramatethre color
and shape parameters. Those values were definaalgtitrial-

and-error and visual inspection for the two segagms steps
of the methodology. The 2007 QuickBird image segat#om

was applied, with a scale parameter of 75, a quéwameter of
0.9 and a shape parameter of 0.1, whilst the 2006k8ird

image was processed at a finer scale of 25, thghtgeifor

colour and shape were kept as 0.9 and 0.1, resphcti

4.2 Water and shadow detection

Dark objects, that include both water and shadowsre
extracted with a histogram thresholding method. yAtlsetic
brightness image was initially computed though W&, red
and green bands mean value and then a histograénigbtness
based on pixel was analysed to determine an optithueshold
value for shadows and non-shadows (a thresholcevall 80
was set). As mentioned by Zhou et al. (2009), &ssumed that
this histogram is bimodal, with the lower part lgpioccupied
by the darker features (shadows and water). Oneedtrk
objects also included water, a Spectral Shape I(88% can be
used to distinguish water from the black body m@séu and
Chen, 2005). The threshold range for separatingethes
features was set in [134, 163].

4.3 Non-shadowed areas classification

The class hierarchy and its associated featuresuesiused for
the classification of the 2007 QuickBird image aresented in
Figure 2. Non-shadowed areas, identified previoirsihe first
step of the methodology, were initially separatadb itwo
features, vegetation and non-vegetation featusdagwa NDVI.
The NDVI was calculated with the formula NDVI = (RH
Red)/(NIR+Red) and the threshold was set to 0.36,utfiro
pixel-based histogram analysis.

The non-vegetation features were then further djdising the
nDSM, in high (hDSM> 1.91 m) and low features (nDSM
1.91 m). These high features were after separatecbuildings
and high crossroads using a shape function (Defni2006).
The density parameter, which is defined as the taditween the
object's area and its radius, was used because rhuma
constructions, in particular industrial and comn@rareas,
tend to have a higher density value (Navulur, 200e
density range was set to [0.7, 5], being 5 the mari value.
Low features were next divided in bare soil anddspaising a
“blue” NDVI, computed using the formula: bNDVI = (R-
Blue)/(NIR+Blue). The threshold value used to discniaté
both features was set as 0.15. Roads and high ceafsskvere
merged as a unique class, named transport umitg sinly two
high crossroads were observed in the 2007 image.

Three different features, trees, shrubs and grasste
discriminated under the vegetation features. Ttasrinination



was achieved based on the nDSM standard deviafisrthe
DSM correspond to the last pulse data of LIDAR, tizSM
expresses only correctly the height of artificedtures, because
vegetated areas are permeable. Therefore, to staroksidual
difference in high between these three features,standard
deviation of the nDSM was evaluated and furtherduséhe
adopted threshold values for grass and trees wespectively
onDSM< 0.6 andonDSM= 2.17. Shrubs were identified by the
in betweervalues of the interval.

FIGURE 2
Figure 2. The hierarchical rule-based classiforati

4.4 Shadowed areas classification

Shadowed areas were classified using the spectdalspatial
information of the 2005 satellite image. In thisedhe adopted
methodology is similar to the one described for than-
shadowed areas, with the exception that the thiéstalues
differ slightly from the ones used for non-shadovieatures in
the 2007 image due to the fact that the images a&gaired at
different months and different years. Besides, théial
segmentation was performed at a finer scale inrdalkeep the
parent-child relation between objects. Howevers @gpproach
was not completely effective since the sun azinarbgles of
both images were not significantly different. Asegult of this,
each shadowed area could not be entirely restdedlassify
the remaining shadows, an alternative approachdbasethe
relations to neighbour objects in the 2005 classifon map
had to be considered. The selected contextualwagebased on
the “relative border to” function (Definiens, 2006¢.9. a
shadow object with a relative border to a transgiimm unit>
0.6 is classified as transportation unit; and aetaobject with
a relative border to tree = 1 (i.e. totally surrded) is classified
as tree.

4.5 Accuracy assessment

For the accuracy assessment of the produced themap, a
random stratified sampling method was used to pecplae
ground reference data. This sampling method musippdied
when there is a need to ensure a minimum samdeirsizach
stratum to derive accuracy estimates for all clegsesented in
the map (Stehman, 1999). The individuals samplésunere
defined as polygons displayed on the classifieqjan®olygons
are suitable for the accuracy assessment of maperajed
through the use of image segmentation and objéetried
classification algorithms (Congalton and Green, 20@0total
number of at least 300 random polygons was plartoede
sampled, with a minimum number of 50 samples peh @aap
class, as proposed by Congalton (1988) for mapsssfthan 1
million acres in size and fewer than 12 classese Thlass
“water” was not considered in the accuracy assasssirce it
occupies less than 0.5 ha. Reference data wasctedll@nd
labelled using the same classification schemeastie used to
generate the map. Since the classification schexeé is simple
(with a few general classes), the reference lajyetdch sample
unit was derived by visual analysis of orthoreetifi aerial
photographs acquired in 2007 with 0.5 m spatiablcg®n.
Reference data was also collected on the groundcamgared
with the airborne data to verify the reference lsbaerived
mainly for vegetated classes (trees, shrubs argblgrad). The
analysis of the accuracy assessment was done witarrar
matrix. An error matrix summarises the correct sifasations
and misclassifications in a contingency table fdyméth the

rows designating the map labels and the columnseteeence
labels (Stehman and Czaplewski, 2003). Standardramcu
measures (overall accuracy, producer's and usecsracy, as
well as Kappa statistics) were derived from thessification

results.

5. RESULTSAND DISCUSSION

Using the pixel-based shadow detection method hegewith
the SSI method, most shadowed areas were coridethyified
(91%). The lowest value of 90% was found for therlss
accuracy of non-shadowed areas and for the producer
accuracy of the shadowed areas. The overall accuwhthe
“water” class was determined by visual interpretatas being
100%. For some classes, such as trees and shssbthien 50
samples were selected because they were not sesespative
in the study site, occupying only 4.6% and 8.7%ths total
area, respectively. For the remaining classes, B0more
samples were selected with a total of 385 valisdagamples.
An overall accuracy of 87% was achieved for theeobj
oriented classification results (Table 1). An estraf the final
extracted seven objects is shown in Figure 3.

Classification accuracy is 89% both for trees arasgrwhile
for shrubs its value is low, only 57%. Shrubs arerestimated
on the final map, being confused mostly with grhss$ also
with trees. In the case of vegetated areas thénhgifprmation
was of relative use, mostly due to the fact thatntBSM could
not be directly used since it did not represent hlegght of
vegetated features. Misclassifications of bare a®igrass were
originated at the upper level of the hierarchidalssification
when vegetated and non-vegetated features wereasegaand
are verified in samples were the soil still has sosparse
vegetation. Transport units being classified asgisdue to the
inappropriate value obtained for the “relative rdo” of a
remaining shadowed object.

Classified Reference data tﬂ/so)er acc.
data B Bs Tu Tr Sh Gs

B 102 3 97

Bs 76 8 11 80

Tu 3 51 94

I 34 4 89

Sh 5 21 11 57

Gs 2 2 2 50 89
Producer’s

acc. (%) 100 90 84 87 91 66

Overall accuracy: 87%; Kappa coefficient: 0.84

Table 1. Error matrix and user’s, producer’s andral
accuracy and Kappa statistics for the produced Bap.
buildings, Bs- bare soil, Tu- transport units, Teets, Sh-
shrubs and Gs- grass.

Buildings and transport units are the classes with lowest
commission errors, respectively 3% and 6%. For loftlsses
the use of the nDSM was extremely helpful. Commisgioors
of bare soil as buildings are also explained byuiiable

“relative border to” values, but also by the existe of

shadowed areas in 2007 that in the 2005 image imefact

buildings due to different satellite azimuth anglesthe 2007
shadows are in the NNW-direction and high feataredeaning
in the ENE-direction, while in the 2005 image hightures are
leaning in the WNW-direction. Misclassificationstiveen bare



soil and transport units are easily justified by thNDVI
threshold used to discriminate them.
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FIGURE 3

Figure 3. A subset of the study area. (a) the 0aig2007
QuickBird imagery; (b) shadows identified by a pikelsed
histogram thresholding method; (c) land cover dassion

obtained with the proposed methodology.

Misclassifications among features with distinctgies might
also have been originated by some height incomsigs found
between the DTM and the DSM due to their large tijap. To
avoid this kind of misclassifications, ancillarytdashould be
acquired preferentially in the same year or, if passible, with
a time gap of less than a couple of years, espedmalurban
areas with an elevated rate of changes. A betseridiination
among vegetated classes might have been achiettledheiuse
of an nDSM obtained by the difference between a DSM
interpolated from the first pulse of raw LIiDAR datend a more
up to date DTM.

6. CONCLUSIONS

Shadowed areas are a major problem in urban higiution

satellite imagery due to the high density of urtfestures. As
the problem of shadowing causes reduction or tmts$ of

spectral feature information, we have developecethadology
that provides a useful approach for the classificabf shadows
using this kind of imagery in urban areas. Howewtranges
may occur in ancillary data acquired at differeated, which
may introduce errors in the classification. A sieglpproach,
such as a bimodal histogram splitting, combinedh &itSpectral
Shape Index provided an efficient way of separashgdows
from non-shadows. The use of a multitemporal s€wtkBird

imagery with different acquisition geometries waseful in

restoring the spectral information casted by urfleatures in the
2007 image. However, for this approach to be cotajle
effective, satellite azimuths angles of both imaghsuld be
similar while sun azimuth angles should be as oipposs
possible. LIDAR data was crucial to separate featuméth

different elevation values, especially for the nagetated
features. Without this segmentation level it wohlave been
extremely difficult to differentiate at a lower kvthose non-
vegetation features into buildings, transport uaitgl bare soil.
LiDAR data was not very useful in the discriminatiof

vegetated features once the DSM, used to gendrateDSM,
was interpolated from the last pulse of LIDAR regirn
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