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ABSTRACT: 
 
In Portugal, updating municipal plans (1:10 000) is required every ten years. High spatial resolution imagery has shown its potential 
for detailed urban land cover mapping at large scales. However, shadows are a major problem in those images and especially in the 
case of urban environments. The purpose of this study is to develop a less time consuming and less expensive alternative approach to 
the traditional geographic data extraction for municipal plans production. A hierarchical object oriented classification method, that 
combines a multitemporal data set of high resolution satellite imagery and Light Detection And Ranging (LiDAR) data, is presented 
for the Municipality of Lisbon. A histogram thresholding method and a Spectral Shape Index (SSI) are initially applied to 
discriminate shadowed from non-shadowed objects using a 2007 QuickBird image. These non-shadowed objects are then divided 
into vegetated and non-vegetated objects using a Normalized Difference Vegetation Index (NDVI). Through a rule-based 
classification using the height information from LiDAR data, vegetated objects are classified into grassland, shrubs and trees while 
non-vegetated objects are distinguished into low and high features. Low features are then separated into bare soil and transport units, 
again using a NDVI, while high features are classified as buildings and high crossroads using the shape of the objects (density). The 
2007 shadowed objects are classified based on the spectral and spatial information of a 2005 QuickBird image, where shadows are in 
different directions. The developed methodology produced results with an overall accuracy of 87%. Misclassifications among 
vegetated features are due to the fact that the nDSM did not express the height for permeable features, while among non-vegetated 
features are due to temporal discrepancies between the DTM and the DSM, to different satellite azimuths in the 2005 and 2007 
images and to unsuitable contextual rules.  
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1. INTRODUCTION 

The extraction of large scale geographical information from 
very high resolution satellite images is an important research 
topic in urban studies, especially in areas with an elevated rate 
of urban changes, as a way to update the geographical 
information. One of the main Portuguese instruments of 
territorial management is the Municipal Director Plan (PDM- 
Master Plan) which has to be updated every ten years. However, 
in municipalities with great urban demands, such as the Lisbon 
municipality, such periodicity is not suitable. These PDM´s are 
produced at scales 1: 10 000 and 1:25 000, respectively, for 
urban and rural municipalities. 
 
The analysis of urban areas demands for a high spatial 
resolution. Traditionally, the extraction of the required 
information at national mapping agencies has been performed 
based on the visual interpretation of extremely high resolution 
aerial photos, which is an expensive and time consuming 
process. Alternatively, high satellite resolution satellite imagery 
can play a role in the capture and maintenance of topographic 
information. However, the information that can be extracted 
from these images is useful to capture medium scale mapping 
features, being difficult to interpret most of the features that are 
of greatest interest in the update of large scale data (Holland et 
al., 2006). In what concerns the PDM’s updating, the most 
relevant features are, in order of importance, built-up areas, 

other impervious surfaces such as concrete parking lots, 
sidewalks and asphalt roadways, vegetated areas and vacant 
land. Even though airborne and spaceborne imagery have been 
conventionally used for map compilation in updating processes, 
the casting shadows that dominate in the scenes acquired over 
dense urban areas and the leaning of buildings and other 
elevated features due to the geometry of acquisition and the 
heterogeneity of the spectral information can cause some 
inevitable problems (Vu et al., 2004). 
 
Light Detection And Ranging (LiDAR) is a relatively new 
remote sensing technique that is revolutionizing topographic 
terrain mapping (Alexander et al., 2009). The potential of 
surface-cover height extracted from multiple-return LiDAR data 
for urban areas analysis and building extraction  has been 
shown by many authors (Vu et al., 2004; Sohn and Dowman, 
2007; Alexander et al., 2009; Chen et al., 2009; Zhou et al., 
2009). Priestnall and Glover (1998) stated that the 
incorporation of building heights offers important extra 
information over and above that offered by optical sensors 
alone. In fact, Chen et al. (2009) concluded that the 
combination of high spatial resolution imagery, such as the 
QuickBird imagery, and LiDAR data can improve urban 
features classification accuracy, since the former provides ample 
spectral and textural information, while the latter offers good 
geometry for urban core building delineation. 
 



 

The aim of the research described in this study is to examine the 
potential of high resolution satellite imagery to derive a sub-
product with less detailed thematic and geographic information 
but with a higher temporal resolution. It is expected that this 
more general level of information should be able to fulfil the 
need to detect, more regularly, significant changes to features in 
urban environments. To achieve this, a multi-source and multi-
temporal dataset, including QuickBird imagery and LiDAR 
data, is used to develop an object oriented classification method 
to produce updated thematic cartography for municipal 
activities.  
 
This manuscript is organized into the following five sections. 
Section 2 presents an overview and references to other studies 
related with the urban features extraction from high resolution 
imagery and LiDAR data. In section 3, we describe the case 
study area, the characteristics of the dataset and the software 
used in this study. Section 4 is concerned with describing the 
developed methodology. The next section, section 5, describes 
and discusses the results of this research. Finally, in section 6 
some conclusions are drawn. 
 
 
2. HIGH RESOLUTION REMOTE SENSING OF 
URBAN AREAS 

The availability of images acquired by the current generation of 
high spatial resolution satellite sensors has contributed for new 
applications, especially for detailed urban areas maps at large 
scales. Even though their spatial resolution enables the 
identification of urban and sub-urban objects, these images are 
difficulty to classify on a pixel-by-pixel basis due to their high 
level of information (Van der Sande et al., 2003). Images of 
urban areas contain a complex spatial set of spectrally distinct 
land feature types, which require important spatial/semantic 
information for their classification. In these cases, object-
oriented image classification algorithms are recommended 
because the information necessary to interpret those images is 
represented by image objects and their mutual relationships 
(Gamanya et al., 2007). 
 
Another limitation on the use of high spatial resolution images 
is related to the existence of shadows cast by elevated urban 
objects, particularly buildings. These shaded areas are usually 
left unclassified or simply classified as shadows (e.g., 
Shackelford and Davis, 2003), resulting in significant loss of 
land features information. One possible approach to overcome 
this problem is to use spatial information, such as adjacency 
relations, for the classification of shaded areas in this kind of 
images (e.g., Yuan and Bauer, 2006; Zhou and Troy, 2008). 
Object-oriented classification algorithms, that consider not only 
the spectral information but also several other image object 
features, such as shape, texture and spatial context, may be used 
to improve the classification in urban areas (Benz et al., 2004; 
Zhou and Troy, 2008). Zhou et al. (2009) used both the spatial 
relations to neighbouring objects and the Normalized 
Difference Vegetation Index (NDVI), to distinguish “low 
shadows” into grass and pavement and “high shadows” into 
trees and buildings. Alternatively, shadows may be classified by 
replacing the shadowed pixels by non-shaded pixels of the same 
region from another image acquired at a different time as 
proposed by Zhou et al. (2009).  
 
Complementarily, altimetry data from LiDAR may be helpful in 
the discrimination of image features of the same material at 
different heights, such as concrete buildings and road/vacant 

land in urban areas (Madhok and Landgrebe, 1999; Gamba and 
Houshmand, 2002; Chen et al., 2009; Zhou et al., 2009). 
However, LiDAR data itself is insufficient to discriminate 
between different features with the same height, such as 
buildings and trees (Vu et al., 2004). In such cases, spectral 
indices, such as the NDVI, can be used to first discriminate 
between vegetation and impervious surface and then at a low 
level of segmentation, the LiDAR data can be used to 
discriminate among features with different heights. As an 
example, using the height information obtained from the surface 
height model, Chen et al. (2009) were able to discriminate 
artificial features into crossroads, high buildings and low 
buildings, while Zhou et al. (2009) separated impervious 
surfaces into buildings and pavements. 
 
 

3. STUDY AREA AND MATERIALS 

3.1 Study area 

The study area, located within the Lisbon Municipality (Figure 
1), has a square shape with an area of approximately 570 ha 
(approximately 2.4 km x 2.4 km). This site was chosen because 
it contains the main features of interest for the municipality 
(buildings, other impervious surfaces, vegetated areas and 
vacant land) and also because LiDAR data were available for 
the area (LiDAR data extent is smaller than the area of the 
municipality of Lisbon). The west part of the study area is 
dominated by a dense urban area with a variety of building 
types and different kinds of transport units (roads, railway and 
associated land).  The east part, although it contains some 
scattered building areas and roads with different widths, 
comprises a wooded area in the North, some vegetated areas, 
mainly belonging to a golf course, some shrub and/or 
herbaceous vegetation and bare soil. Water features are also 
present in the study area (within the golf course) but their area 
is insignificant when compared to the total area of the study 
site. Variations in the terrain are found in the study site, with 
altitudes ranging from 25 to 110 metres. 
 
3.2 Data and software 

The satellite data consist of two pan-sharpened QuickBird 
image dated 13 April 2005 and 11 March 2007, with a spatial 
resolution of 0.6 m. The sun azimuth and elevation of the 2005 
image are 149°.6 and 57°.3, respectively, while for the 2007 
image those values are 161°.4 and 46°.0, respectively. All 
images have been orthorectified with sub-pixel accuracy, using 
Rational Polynomial Coefficients (RPCs) with 29 GCP’s and 
validated with 22 checkpoints. For orthorectification, a Digital 
Terrain Model (DTM) was generated from the 1998 
municipality vector cartographic map at scale 1:1 000 with a 
spatial resolution of 0.5 m. A 2006 LiDAR Digital Surface 
Model (DSM) with a 1-meter spatial resolution was provided by 
LOGICA, covering only partially the extent of the municipality 
of Lisbon. Elevation and intensity of the first and last pulse 
returns from a TopoSys II 83 kHz LiDAR instrument, flown on 
a helicopter, were recorded for each laser pulse, with an average 
measurement density of 20 points per m2. The provided DSM 
was produced using the last pulse returns, meaning that only 
data from the surface that was last hit by the laser pulse was 
considered. In the case of buildings or other impermeable 
surfaces, the first and last returns will yield the same 
information. A surface cover height model (nDSM) was 
generated by subtracting the DTM from the DSM, to be used as 
ancillary data in the classification process. Orthorectified 



 

photographs acquired on 16 August 2007 were provided by the 
Portuguese Geographical Institute (IGP) and used to collect the 
reference data used for the accuracy assessment of the map. 
These images have four spectral bands in the blue, green, red 
and infrared wavelengths and 0.5 m spatial resolution. All data 
was converted to the PT-TM06/ETRS89 coordinate system and 
the vertical datum of the DSM and the DTM is the maregraph 
of Cascais. The Definiens Professional 5.0 software was used to 
conduct the object-oriented images analysis. Images 
orthorectification was undertaken in the PCI Geomatica V9.1 
(OrthoEngine) since Definiens does not support those 
capabilities.  
 

 
Figure 1.  Study area (grey square): an urban area in the 

Municipality of Lisbon, Portugal  
 
 

4. METHODOLOGY 

A hierarquical object-based procedure was developed to classify 
a 2007 QuickBird image into seven classes (trees, shrubs, grass, 
buildings, transport units, bare soil and water). The dataset used 
to implement this procedure integrates a multitemporal set of 
QuickBird images and LiDAR elevation data. The hierarchical 
information extraction process was made up of three main steps. 
First, the dark objects (water and shadows) and non-dark object 
were separated. Then, the non-dark objects were classified using 
the 2007 QuickBird image. Finally, the dark objects were 
classified using the 2005 QuickBird image. In both of the 
classifications steps an identical classification approach was 
adopted. First, vegetation and artificial features are 
differentiated. Underneath vegetation class, grass, shrub and 
tree were extracted, while under the artificial class, road, 

building and bare soil were discriminated. As shadows could 
not be entirely recovered due to the acquisition geometry of the 
2005 image, the common shadows between 2005 and 2007 
were classified using contextual rules. 
 
4.1 Image segmentation 

Image segmentation is the process of dividing an image in non-
overlapping parts in the image space (Schiewe, 2002). The 
Definiens Professional 5.0 software provides several possible 
image segmentation algorithms (Definiens, 2006). In this study 
the multi-resolution segmentation was adopted. This algorithm 
requires several inputs, such the scale parameter and the color 
and shape parameters. Those values were defined through trial-
and-error and visual inspection for the two segmentations steps 
of the methodology. The 2007 QuickBird image segmentation 
was applied, with a scale parameter of 75, a color parameter of 
0.9 and a shape parameter of 0.1, whilst the 2005 QuickBird 
image was processed at a finer scale of 25, the weights for 
colour and shape were kept as 0.9 and 0.1, respectively. 
 
4.2 Water and shadow detection 

Dark objects, that include both water and shadows, were 
extracted with a histogram thresholding method. A synthetic 
brightness image was initially computed though the NIR, red 
and green bands mean value and then a histogram of brightness 
based on pixel was analysed to determine an optimum threshold 
value for shadows and non-shadows (a threshold value of 180 
was set). As mentioned by Zhou et al. (2009), it is assumed that 
this histogram is bimodal, with the lower part being occupied 
by the darker features (shadows and water). Once the dark 
objects also included water, a Spectral Shape Index (SSI) can be 
used to distinguish water from the black body mask (Dou and 
Chen, 2005). The threshold range for separating these two 
features was set in [134, 163].   
 
4.3 Non-shadowed areas classification 

The class hierarchy and its associated features and rules used for 
the classification of the 2007 QuickBird image are presented in 
Figure 2. Non-shadowed areas, identified previously in the first 
step of the methodology, were initially separated into two 
features, vegetation and non-vegetation features, using a NDVI. 
The NDVI was calculated with the formula NDVI = (NIR-
Red)/(NIR+Red) and the threshold was set to 0.36, through 
pixel-based histogram analysis. 
 
The non-vegetation features were then further divided, using the 
nDSM, in high (nDSM> 1.91 m) and low features (nDSM≤ 
1.91 m). These high features were after separated into buildings 
and high crossroads using a shape function (Definiens, 2006). 
The density parameter, which is defined as the ratio between the 
object’s area and its radius, was used because human 
constructions, in particular industrial and commercial areas, 
tend to have a higher density value (Navulur, 2007). The 
density range was set to [0.7, 5], being 5 the maximum value. 
Low features were next divided in bare soil and roads, using a 
“blue” NDVI, computed using the formula: bNDVI = (NIR-
Blue)/(NIR+Blue). The threshold value used to discriminate 
both features was set as 0.15. Roads and high crossroads were 
merged as a unique class, named transport units, since only two 
high crossroads were observed in the 2007 image. 
 
Three different features, trees, shrubs and grass, were 
discriminated under the vegetation features. This discrimination 



 

was achieved based on the nDSM standard deviation. As the 
DSM correspond to the last pulse data of LiDAR, the nDSM 
expresses only correctly the height of artificial features, because 
vegetated areas are permeable. Therefore, to search for residual 
difference in high between these three features, the standard 
deviation of the nDSM was evaluated and further used. The 
adopted threshold values for grass and trees were, respectively 
σnDSM≤ 0.6 and σnDSM≥ 2.17. Shrubs were identified by the 
in between values of the interval. 
 

FIGURE 2 
 

Figure 2.  The hierarchical rule-based classification. 
 
4.4 Shadowed areas classification 

Shadowed areas were classified using the spectral and spatial 
information of the 2005 satellite image. In this case the adopted 
methodology is similar to the one described for the non-
shadowed areas, with the exception that the threshold values 
differ slightly from the ones used for non-shadowed features in 
the 2007 image due to the fact that the images were acquired at 
different months and different years. Besides, the initial 
segmentation was performed at a finer scale in order to keep the 
parent-child relation between objects. However, this approach 
was not completely effective since the sun azimuth angles of 
both images were not significantly different. As a result of this, 
each shadowed area could not be entirely restored. To classify 
the remaining shadows, an alternative approach based on the 
relations to neighbour objects in the 2005 classification map 
had to be considered. The selected contextual rule was based on 
the “relative border to” function (Definiens, 2006), e.g. a 
shadow object with a relative border to a transportation unit ≥ 
0.6 is classified as transportation unit; and a shadow object with 
a relative border to tree = 1 (i.e. totally surrounded) is classified 
as tree. 
 
4.5 Accuracy assessment 

For the accuracy assessment of the produced thematic map, a 
random stratified sampling method was used to prepare the 
ground reference data. This sampling method must be applied 
when there is a need to ensure a minimum sample size in each 
stratum to derive accuracy estimates for all classes presented in 
the map (Stehman, 1999). The individuals sample units were 
defined as polygons displayed on the classified image. Polygons 
are suitable for the accuracy assessment of maps generated 
through the use of image segmentation and object-oriented 
classification algorithms (Congalton and Green, 2009). A total 
number of at least 300 random polygons was planned to be 
sampled, with a minimum number of 50 samples per each map 
class, as proposed by Congalton (1988) for maps of less than 1 
million acres in size and fewer than 12 classes. The class 
“water” was not considered in the accuracy assessment since it 
occupies less than 0.5 ha.  Reference data was collected and 
labelled using the same classification scheme as the one used to 
generate the map. Since the classification scheme used is simple 
(with a few general classes), the reference label for each sample 
unit was derived by visual analysis of orthorectified aerial 
photographs acquired in 2007 with 0.5 m spatial resolution. 
Reference data was also collected on the ground and compared 
with the airborne data to verify the reference labels derived 
mainly for vegetated classes (trees, shrubs and grassland). The 
analysis of the accuracy assessment was done with an error 
matrix. An error matrix summarises the correct classifications 
and misclassifications in a contingency table format, with the 

rows designating the map labels and the columns the reference 
labels (Stehman and Czaplewski, 2003). Standard accuracy 
measures (overall accuracy, producer’s and user’s accuracy, as 
well as Kappa statistics) were derived from the classification 
results. 
  
 

5. RESULTS AND DISCUSSION 

Using the pixel-based shadow detection method together with 
the SSI method, most shadowed areas were correctly identified 
(91%). The lowest value of 90% was found for the user’s 
accuracy of non-shadowed areas and for the producer’s 
accuracy of the shadowed areas. The overall accuracy of the 
“water” class was determined by visual interpretation as being 
100%. For some classes, such as trees and shrub, less than 50 
samples were selected because they were not so representative 
in the study site, occupying only 4.6% and 8.7% of the total 
area, respectively. For the remaining classes, 50 or more 
samples were selected with a total of 385 validation samples. 
An overall accuracy of 87% was achieved for the object 
oriented classification results (Table 1). An extract of the final 
extracted seven objects is shown in Figure 3. 
 
Classification accuracy is 89% both for trees and grass, while 
for shrubs its value is low, only 57%. Shrubs are overestimated 
on the final map, being confused mostly with grass but also 
with trees. In the case of vegetated areas the height information 
was of relative use, mostly due to the fact that the nDSM could 
not be directly used since it did not represent the height of 
vegetated features. Misclassifications of bare soil as grass were 
originated at the upper level of the hierarchical classification 
when vegetated and non-vegetated features were separated, and 
are verified in samples were the soil still has some sparse 
vegetation. Transport units being classified as grass is due to the 
inappropriate value obtained for the “relative border to” of a 
remaining shadowed object. 
 
 

Reference data 
User acc. 
(%) 

Classified 
data 

B Bs Tu Tr Sh Gs  
B 102 3     97 
Bs  76 8   11 80 
Tu  3 51    94 
Tr    34  4 89 
Sh    5 21 11 57 
Gs  2 2  2 50 89 
Producer’s 
acc. (%) 

 
100 

 
90 

 
84 

 
87 

 
91 

 
66 

 

Overall accuracy: 87%; Kappa coefficient: 0.84   
 

Table 1. Error matrix and user’s, producer’s and overall 
accuracy and Kappa statistics for the produced map. B- 

buildings, Bs- bare soil, Tu- transport units, Tr- trees, Sh- 
shrubs and Gs- grass. 

 
Buildings and transport units are the classes with the lowest 
commission errors, respectively 3% and 6%. For both classes 
the use of the nDSM was extremely helpful. Commission errors 
of bare soil as buildings are also explained by unsuitable 
“relative border to” values, but also by the existence of 
shadowed areas in 2007 that in the 2005 image were in fact 
buildings due to different satellite azimuth angles. In the 2007 
shadows are in the NNW-direction and high features are leaning 
in the ENE-direction, while in the 2005 image high features are 
leaning in the WNW-direction. Misclassifications between bare 



 

soil and transport units are easily justified by the bNDVI 
threshold used to discriminate them. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3 
 

Figure 3. A subset of the study area. (a) the original 2007 
QuickBird imagery; (b) shadows identified by a pixel-based 
histogram thresholding method; (c) land cover classification 

obtained with the proposed methodology. 
 

Misclassifications among features with distinct heights might 
also have been originated by some height inconsistencies found 
between the DTM and the DSM due to their large time gap. To 
avoid this kind of misclassifications, ancillary data should be 
acquired preferentially in the same year or, if not possible, with 
a time gap of less than a couple of years, especially in urban 
areas with an elevated rate of changes. A better discrimination 
among vegetated classes might have been achieved with the use 
of an nDSM obtained by the difference between a DSM, 
interpolated from the first pulse of raw LiDAR data, and a more 
up to date DTM. 
 
 

6. CONCLUSIONS 

Shadowed areas are a major problem in urban high resolution 
satellite imagery due to the high density of urban features. As 
the problem of shadowing causes reduction or total loss of 
spectral feature information, we have developed a methodology 
that provides a useful approach for the classification of shadows 
using this kind of imagery in urban areas. However, changes 
may occur in ancillary data acquired at different dates, which 
may introduce errors in the classification. A simple approach, 
such as a bimodal histogram splitting, combined with a Spectral 
Shape Index provided an efficient way of separating shadows 
from non-shadows. The use of a multitemporal set of QuickBird 
imagery with different acquisition geometries was useful in 
restoring the spectral information casted by urban features in the 
2007 image. However, for this approach to be completely 
effective, satellite azimuths angles of both images should be 
similar while sun azimuth angles should be as opposite as 
possible. LiDAR data was crucial to separate features with 
different elevation values, especially for the non-vegetated 
features. Without this segmentation level it would have been 
extremely difficult to differentiate at a lower level those non-
vegetation features into buildings, transport units and bare soil. 
LiDAR data was not very useful in the discrimination of 
vegetated features once the DSM, used to generate the nDSM, 
was interpolated from the last pulse of LiDAR returns. 
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