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Summary 
Core testing is considered the most accurate technique for the assessment of in-situ concrete 
strength. EN 13791:2007 gives guidance for estimating in-situ compressive strength in existing 
structures and states that core testing is the reference method. However, the number of cores that 
can be taken from a structure is usually limited, so it may be advantageous to supplement the core 
tests with some type of indirect test. The standard mentioned above establishes two alternatives for 
the calibration of indirect tests, both based on core tests results taken from the structure being 
assessed. One of them requires at least 18 core tests. But if it is available 18 core tests, it is only 
natural to ask if it is really necessary to supplement those core tests with an indirect test. This 
question motivates the study here presented. Specifically, this study deals with the determination of 
the number of cores above which the use of an indirect test, as a supplement to core tests, is no 
longer attractive. 
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1. Introduction 
Currently the most accurate method to assess the concrete strength of an existing structure is the 
assessment directly from core tests. However, the number of cores that can be taken from a 
structure is in general limited, not only because it introduces damage into the structure, but also 
because it is a time consuming and expensive technique. Thus, if it is required to estimate, for 
example, the characteristic value of the concrete strength from that small sample of cores, the 
statistical uncertainty will be large and reduce such an estimate.  

This drawback can be overcome by supplementing the core tests with indirect tests, such as rebound 
hammer tests, ultrasonic pulse velocity tests and pull-out tests. These tests are much more economic 
than core tests and furthermore, with exception of pull-out tests, do not introduce any damage into 
the structure. With these indirect tests it is possible to obtain a large number of results, virtually 
eliminating the statistical uncertainty. 

Nevertheless, these tests need a previous calibration, which, according to EN 13791:2007  [1] must 
be carried out specifically for the structure being analyzed. In fact such tests depends not only on 
the equipment itself, but also on the properties of the concrete being analysed, such as the concrete 
age, the type of aggregates, the condition in terms of durability, among others [2]. If indirect tests 
are used without a previous calibration specifically for the structure under study, there is a risk of 
introducing systematic errors. 

According to EN 13791:2007 [1] the calibration must be carried out using cores taken from the 
structure. But, again, since the number of cores is limited, there will be (statistical) uncertainty in 
calibration. On the other hand, it is necessary to take into account the lack of precision of the 
indirect test, because they measure a property not fully correlated with the concrete strength. Thus, 



by using indirect tests as a supplement to the direct test (core tests), even though the statistical 
uncertainty is eliminated because of the high number of results that can be obtained, they introduce 
two new sources of uncertainty: one due to the fact that the calibration is carried out from a limited 
number of cores and other due to the lack of precision of the indirect test. 

In this paper the statistical uncertainty associated to core tests will be called direct test uncertainty 
and the two sources of uncertainty associated to indirect tests mentioned above will be called  
together indirect test uncertainty. By balancing the direct test uncertainty and the indirect test 
uncertainty it can be decided if it is beneficial to use indirect tests as a supplement to core tests. 
From a probabilistic point of view, it can be expected that there is a number of cores above which it 
is not worth using indirect tests. This happens when the direct test uncertainty becomes smaller than 
the indirect test uncertainty. 

As it will be seen, the number of cores above which it is not worth using indirect tests depends 
basically on two parameters: the precision of the indirect test and the variability (coefficient of 
variation) of the concrete. 

2. Assessment of direct test uncertainty 
Suppose that the compressive strength cf  of an existing structure follows a normal distribution. The 
population cf  is identified here as the values that cf  takes from point to point in that structure. The 
objective is to estimate the characteristic value of cf , corresponding to the quantile 0.05 of his 
probability distribution. Let the characteristic value be denoted by ckf  and an estimate of ckf  by 

ĉkf . With the objective of determining an estimate ĉkf , suppose that a sample of n  cores was taken, 
which, after being tested in laboratory, resulted in a sample 1{ ,..., }c cnf f of n  values of the 
compressive strength cf . Let cf  and s  be, respectively, the mean and standard deviation of that 
sample. Let / cV s f=  be the coefficient of variation. Thus, since it was assumed that cf  is normally 
distributed, an estimate of ckf  would be given simply by: 

0
ˆ (1 1.645 )ck cf V f= − . (1) 

This estimate, however, does not include the statistical uncertainty, i.e., the uncertainty arising by 
the fact that the parameters cf  and V  was estimated from a sample with finite size. It has been 
widely accepted that a Bayesian approach is the appropriate way to deal with statistical uncertainty 
[3]. According to the predictive model for a normal distributed variable corresponding to an non-
informative prior distribution on the parameters, the Bayesian estimate forckf , here denoted by 1ĉkf , 
is given by: 
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where 0.05, 1nt −  denotes the inverse of the t  distribution with 1nν = −  degrees of freedom, computed 
at 0.05p = . 

Dividing (1) by (2) it is obtained a factor which reflects the extent to which the estimate 0ĉkf  must 
be reduced in order to take into account the statistical uncertainty. This factor, here denoted by 1α  
and called direct test uncertainty factor, is always greater than one and tends to one as the sample 
size of cores grows. The direct test uncertainty factor is then given by: 
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Note that the direct test uncertainty factor depends only on the number of cores and the estimated 
coefficient of variation of cf . The factor 1α  is the factor by means of which 0ĉkf  must be divided in 
order to obtain the estimate 1ĉkf  which, as mentioned above, properly include the statistical 
uncertainty. Note that when n → ∞ , 1 1α → . So the case with 1 1α =  corresponds to the case where 
there is no statistical uncertainty. 

As an example, consider a structure from which 5 cores was taken, later tested in laboratory. 
Suppose that those tests yielded 40 MPacf =  and 0.12V = . The estimate of ckf  without take into 



account the statistical uncertainty is then 0
ˆ (1 1,645 0,12)40 32,1 MPackf = − × = . The direct test 

uncertainty factor, (Eq. (3), is equal to 1,115, which leads to 1
ˆ 32 /1,115 29,7 MPackf = = . 

In Figure 1 1α  is plotted as a function of the number of cores n  for a concrete with 0.12V = . 
According to that graphic (concrete with 0.12V = ), for 20n >  the factor 1α  is less than 1.02. So, 
for this concrete the statistical uncertainty associated to a sample with size of about 20 is almost 
zero (for the purpose of estimating ckf ). Therefore, from a probabilistic point of view, there would 
be no need to supplement the core tests with an indirect test. 

But, suppose that it would be feasible to take from the structure only 5 cores, which, as seen above, 
leads to 1 1,115α = . In this case, probably it would be worth supplementing the direct tests with 
indirect test in order to reduce the statistical uncertainty. As it will be seen in next section, whether 
it would be worth or not depends on the precision of indirect test (and also on the coefficient of 
variation of cf ) . 
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Figure 1: Direct test uncertainty factor for a concrete with 0.12V =  

3. Assessment of indirect test uncertainty 
Using indirect tests, the compressive strength of the concrete is evaluated from a property correlated 
with the strength, such as the superficial hardness in the case of the rebound hammer. As mentioned 
before, indirect tests need a previous calibration performed from a number of cores taken from the 
structure under evaluation. 

Suppose that the correlation between the property X  measured by the indirect test and the 
compressive strength cf  of concrete meets the requirements of the linear regression model, that is, 
the compressive strength can be predicted by a model of the form: 

0 1cf X Zβ β σ= + + , (4) 

where Z  is a standardized normal variable, i.e., (0,1)Z N∼ . 

The parameters of such a model (0β , 1β  and σ ) are estimated from a sample of n  pairs 
1 1{( , ),..., ( , )}c n cnx f x f , where ix  represents the value measured by the indirect test at location i  and 

cif  the strength of the core taken from that location. The calibration of the indirect test consists of 
estimating the parameters 0β , 1β  and σ , whose estimates here denoted by 0β̂ , 1̂β  and σ̂ , are in 
general performed by the least squares method [4]. The parameter σ  measures the mean deviation 
of the points ( , )i cix f  from the regression line, thereby constituting a measure of the precision of the 
indirect test, or still, a measure of the ability of the indirect test in predicting the compressive 
strength cf . 



But, since the parameters 0β , 1β  and σ  are estimated from a sample 1 1{( , ),..., ( , )}c n cnx f x f  of 
finite size (n , in this case) statistical uncertainty will exist, which is properly taken into account by 
the following predictive model [5]: 

2

0 1 2
1 ( )ˆ ˆ ˆ1c n

xx
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n S
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−= + + + +  
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where 2nT −  denotes a t  distributed variable with 2nν = −  degrees of freedom; 1
n

iix x== Σ ; 
2

1( )n
xx iiS x x== Σ − . 

The predictive model expressed by (5) is the Bayesian model obtained considering the Jeffreys’ 
prior distribution for the parameters 0β , 1β  and σ , which is a (improper) distribution of the non-
informative type. It must be said that the model above coincides with the classic one. The advantage 
of the Bayesian approach, however, is that it would be able to include prior knowledge about the 
parameters 0β , 1β  andσ , which could reduce the statistical uncertainty. Nevertheless in the present 
study it will be considered the situation where there is no previous knowledge. 

Based on the predictive model above, the objective is now to determine an estimate of ckf , which 
will be denoted by 2ĉkf . This will be then the estimate given by the indirect test. Unfortunately, it is 
not possible to derive an expression for 2ĉkf , as was done for 1ĉkf  (see Eq. (2)), since it is not 
possible to obtain a closed form for the predictive distribution associated to the Eq. (5). However, 

2ĉkf  can be obtained trough the Monte Carlo Method (MCM), as explained in the following. 

Suppose that an indirect test properly calibrated for a given structure was performed m  times on 
that structure, leading to a sample 1{ ,..., }mx x . Thus, generating trough MCM a sample 1{ ,..., }mt t  of 
the variable 2nT − , where n  is the number of cores used in calibration, Eq. (5) can be used to 
generate a sample 1{ ,..., }c cmf f , from which 2ĉkf  can be computed. 

Note that in general m  is high, of the order of several dozens or even hundreds, because of the ease 
use of the indirect test. So, for m  large there is no statistical uncertainty in the sample 1{ ,..., }c cmf f  
itself, except of course the uncertainty in calibration and the uncertainty due to the lack of precision 
of the indirect test. 

As before, let us define the factor: 
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where, remember, 0
ˆ (1 1.645 )ck cf V f= −  which is the estimate of ckf  from core tests without taking 

into account the statistical uncertainty. The factor 2α  reflects the extent to which the estimate 0ĉkf  
must be reduced in order to account the uncertainty associated to the indirect test. Evidently, from a 
probabilistic point of view, it only makes sense to use the indirect test as a supplement to the direct 
test if 2 1α α< . Similar to the factor 1α , the factor 2α  will be called indirect test uncertainty factor. 

In order to determine 2α  using the MCM, the following algorithm was developed. Suppose that it 
was taken from a given structure n  cores, which, once tested in laboratory, gave a mean strength cf  
and a coefficient of variation of V . Based on those tests, the chosen indirect test was calibrated, 
giving the estimates 0β̂ , 1̂β  and σ̂ . The factor 2α  can be computed as follows: 

1)  draw a sample 1{ ,..., } ( , )c cm c cf f N f V f⋅∼ ; 

2) draw a sample 1{ ,..., } (0,1)nz z N∼ ; 

3) simulate the measurements with the indirect test, computing 0 1
ˆ ˆˆ( ) /i c ix f zβ σ β= − − , 1,...,i m= ; 

4) evaluate 
1

m
ii

x x==∑  and 2 2
1
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s m x x== − −∑ ; 

5) compute 2( 1)xx XS n s= − ; 

6) draw  a sample 1{ ,..., } student( 2)mt t n −∼ ; 



7) generate 
2
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n Sxx

β β σ−= + + + + , 1,...,i m= ; 

8) from the sample 1{ ,..., }c cmf f  generated in the previous step, compute the quantile 5%, 2ĉkf ; 

9) compute 0
2

2 2

ˆ (1 1.645 )
ˆ ˆ
ck c
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It should be assigned to m  a value sufficiently high so that 2α  stabilizes in successive runs of the 
routine. The systematic use of this routine showed that 2α  does not depend on the parameters 0β̂  
and 1̂β , nor the mean cf . So, 2α  depends only on the sample size ,n  on the indirect test precision 
σ̂ , and on the estimated coefficient of variation V  of the concrete strength.  

Consider again the example of the previous section, where, remember, the concrete strength of a 
existing structure is being assessed. From that structure it was taken 5n =  cores, which, after tested 
in laboratory, gave 40 MPacf = and 0.12V = . Suppose that, based on those core tests, the indirect 
test chosen was calibrated, giving the parameters0ˆ 24 MPaβ = − , 1̂ 1.2 MPaβ =  and ˆ 2.0 MPaσ = . These 
are reasonable values for rebound hammer tests [2]. The routine described above gave 2 1.08α = , 
that is lower than1α . Remember that in this example 1 1,115α = . So, in this case it is worth 
supplementing the core tests with the indirect test being considered, since 2 1α α< . Obviously it is 
being assumed that the cores available are representative for the structure or structural element 
under study. 

In Figure 2α  is plotted as a function of the number of cores n  used to calibrate the indirect test. 
Figure 2 also shows 1α  in order to compare it with 1α . It can be observed that, for an indirect test 
with ˆ 2.0 MPaσ =  and for a concrete with 0.12V = , such an indirect test would only be useful if it 
was feasible to take from that structure up to about 8 cores. Above 8 cores the uncertainty 
associated to the core tests becomes smaller than the uncertainty of the indirect test, even for a large 
number of measurements with the indirect test. 
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Figure 2: Direct and indirect test uncertainty factors for a concrete with 0.12V =  and a indirect 
test with ˆ 2.0 MPaσ = . 

In the following, similar curves will be drawn, but considering that the concrete is of inferior 
quality, with say 0.18V = . Figure 3 shows the results for an indirect test with ˆ 2.0 MPaσ = . As it can 
be seen, the number of cores above which the indirect test is no longer beneficial rose to about 20. 
So, concrete with poor quality favours the use of indirect tests. 
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Figure 3: Direct and indirect test uncertainty factors for a concrete with 0.18V =  and a indirect 
test with ˆ 2.0 MPaσ = . 

Consider once again a concrete with 0.12V = , but suppose now that the precision of the indirect 
test is estimated by ˆ 3.0 MPaσ = . As it can be seen from Figure 4, the uncertainty associated to the 
core tests solely is lower than the indirect test uncertainty, even for few cores. So, for the purpose of 
assessment the concrete strength, such an indirect test should not be used, at least as a supplement 
of core tests. 
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Figure 4: Direct and indirect test uncertainty factors for a concrete with 0.12V =  and a indirect 
test with ˆ 3.0 MPaσ = . 

 



4. Conclusions 
Whenever the concrete strength of an existing structure is to be assessed, core testing constitutes the 
reference method, not only because it is the most accurate method, but also because it constitutes 
the base for calibration of indirect tests. In this paper it was shown how characteristic value of the 
concrete strength can be estimated taking into account the statistical uncertainty associated to a 
limited number of cores. 

When the number of cores is small and the coefficient of variation of the concrete strength is high, 
the statistical uncertainty can be significant, reducing the estimate of the characteristic concrete 
strength. In this case it can be advantageous to supplement the core tests with an indirect test, 
properly calibrated using the core tests results. As shown in this paper, for a given concrete 
(characterized by a certain coefficient of variation) and for a given indirect test (characterized by a 
certain precision) there is a number of cores above which the statistical uncertainty associated to 
core tests solely is lower than the uncertainty introduced by the indirect test. So the use of that 
indirect test is only attractive if the number of cores that is practicable to take from the structure is 
smaller than that number. 

It should be emphasized, however, that the conclusions drawn in this study are valid under two 
basic assumptions: first, the indirect test satisfies the requirements of the linear regression model 
and, second, the calibration is carried out specifically for the concrete to be assessed, i.e., any 
previous knowledge about the calibration parameters gained from others calibration operations is 
not used. 

It is evident that if the indirect test being used had been calibrated for a similar structure, it would 
be reasonable to use the knowledge gained. This study can be easily extended to cover that 
situation. For example, suppose that a previous calibration was performed on a similar structure, 
having been used m  cores. Thus the uncertainty factor associated to the indirect test could be  re-
evaluated using n m+  instead n  in the predictive model. 
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