Please use this identifier to cite or link to this item:
Title: Optical measurement of the alteration kinetics of porous building materials during salt crystallization
Authors: Gonçalves, T. D.
Musacchi, J.
Brito, V.
Keywords: Salt decay;Salt crystallization;Stone;Drying;Alteration;Optical profilometry
Issue Date: 11-Jun-2014
Citation: Teresa Diaz Gonçalves, Jessica Musacchi, Vânia Brito (2014) Optical measurement of the alteration kinetics of porous materials during salt crystallization. Cryspom IV-4th international workshop on crystallization in porous media, Amsterdam, 11-13 June 2014 (organized by the Institute of Physics of the University of Amsterdam).
Abstract: In salt crystallization tests, porous building materials are typically subjected to extreme conditions, such as high temperatures or successive wet/dry cycles, in order to obtain measurable changes within a reasonable period of time. However, the unrealistic testing conditions may distort the results. This can be particularly significant for salts such as sodium sulfate, which can give rise to massive contact- or temperature-induced crystallization processes that hardly occur in the architectural heritage. Here, we propose a new method where the small changes undergone by the porous material are measured by a non-contact optical technique at the micrometer scale. This allows using test conditions more representative of those that generally occur on site. Topographic profiles are obtained during the process, from which an alteration kinetics curve is afterwards calculated [1]. The alteration curve can be combined and compared to the drying kinetics curve since the system, due to a recent update, permits simultaneous gravimetric measurements [2]. It also allows carrying out time-lapse photography, which may provide animations of the macroscopic alteration process. We report, as an example, sodium sulfate crystallization tests consisting of a single isothermal drying event at 20ºC and 50% RH. The tests were performed on natural stones, relevant for the architectural heritage, which developed either delamination or simply efflorescence. Both types of alteration were successfully characterized by the above described method. The results show that, under the chosen conditions, sodium sulfate can develop decay patterns similar to those frequently observed on site. The proposed method opens new perspectives for the development of salt crystallization tests that are more appropriate than those currently available to study decay processes and to evaluate materials and treatments for the architectural heritage
Appears in Collections:DM/NBPC - Comunicações a congressos e artigos de revista

Files in This Item:
File Description SizeFormat 
Apresentação C8.pdf3.19 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.